М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
0005zet
0005zet
02.03.2021 02:04 •  Математика

Сравните числа д)1 8/17 и 2 1/17 е)12/25 и 9/25

👇
Ответ:
Про100zvezda
Про100zvezda
02.03.2021
Д)1 8/17 < 2 1/17
е)12/25 > 9/25
4,8(72 оценок)
Открыть все ответы
Ответ:

(x + 1)|x-2| = a^{2}

Первый аналитический)

1) Если x 2, то (x + 1)(x-2) = a^{2}:

x^{2}-x-2 = a^{2}

x^{2} - x - 2 - a^{2} = 0

x^{2} - x - (2 + a^{2}) = 0

D = (-1)^{2} + 4(2 + a^{2}) = 1+8 + 4a^{2} = 9 + 4a^{2} 0

x_{1,2} = \dfrac{1 \pm \sqrt{9 + 4a^{2}}}{2}

Проверим условие x 2:

1.1) \ \dfrac{1 + \sqrt{9 + 4a^{2}}}{2} 2

1 + \sqrt{9 + 4a^{2}} 4

\sqrt{9 + 4a^{2}} 3

9 + 4a^{2} 9

4a^{2} 0

a \neq 0

1.2) \ \dfrac{1 - \sqrt{9 + 4a^{2}}}{2} 2

1 - \sqrt{9 + 4a^{2}} 4

\sqrt{9 + 4a^{2}} < -3

a \in \varnothing

Таким образом, если a \neq 0, то имеем корень x = \dfrac{1 + \sqrt{9 + 4a^{2}}}{2}

2) Если x < 2, то -(x + 1)(x-2) = a^{2}:

x^{2}-x-2 = -a^{2}

x^{2} - x - 2 + a^{2} = 0

x^{2} - x - (2 - a^{2}) = 0

D = (-1)^{2} + 4(2 - a^{2}) = 1+8 - 4a^{2} = 9 - 4a^{2}

Найдем такие значения a, при которых D 0:

9 - 4a^{2} 0

4a^{2} < 9

\sqrt{4a^{2}} < \sqrt{9}

2|a| < 3

a \in \left(-\dfrac{3}{2}; \ \dfrac{3}{2} \right)

Тогда корни:

x_{1,2} = \dfrac{1 \pm \sqrt{4 - 9a^{2}}}{2}

Проверим условие x < 2:

2.1) \ \dfrac{1 + \sqrt{9 - 4a^{2}}}{2} < 2

1 + \sqrt{9 - 4a^{2}} < 4

\sqrt{9 - 4a^{2}} < 3

9 - 4a^{2} < 9

-4a^{2} < 0

4a^{2} 0

a \neq 0

2.2) \ \dfrac{1 - \sqrt{9 - 4a^{2}}}{2} < 2

1 - \sqrt{9 - 4a^{2}} < 4

\sqrt{9 - 4a^{2}}-3

a \in \left[-\dfrac{3}{2}; \ \dfrac{3}{2} \right]

С учетом a \in \left(-\dfrac{3}{2}; \ \dfrac{3}{2} \right) имеем: a \in \left(-\dfrac{3}{2}; \ 0 \right) \cup \left(0; \ \dfrac{3}{2} \right)

Таким образом, при a \in \left(-\dfrac{3}{2}; \ 0 \right) \cup \left(0; \ \dfrac{3}{2} \right) имеем три корня.

Второй графический)

Рассмотрим две функции:

f(x) = (x+1)|x-2|

g(x) = a^{2} — линейная функция, график — прямая, параллельная оси абсцисс

Изобразим на координатной плоскости функцию f(x)

1) Если x \geq 2, то f(x) = (x + 1)(x-2) — квадратичная функция, график — парабола, ветви параболы направлены вверх

2) Если x < 2, то f(x) = -(x + 1)(x-2) — квадратичная функция, график — парабола, ветви параболы направлены вниз

Вершина параболы: (x_{0}; \ y_{0}) = \left(\dfrac{1}{2}; \ \dfrac{9}{4} \right)

Изобразим данные функции на соответствующих участках (см. вложение).

Уравнение (x + 1)|x-2| = a^{2} будет иметь три корня, если будет три пересечения графика функции f(x) = (x+1)|x-2| c g(x) = a^{2}

Так будет, если 0< a^{2} < \dfrac{9}{4} или \displaystyle \left \{ {{a^{2} 0 \ } \atop {a^{2} < \dfrac{9}{4} }} \right.

\displaystyle \left \{ {{a \neq 0 \ \ \ \ \ \ \ \ \ \ \ \, } \atop {a \in \left(-\dfrac{3}{2}; \ \dfrac{3}{2} \right)}} \right.

Решением системы будет a \in \left(-\dfrac{3}{2}; \ 0 \right) \cup \left(0; \ \dfrac{3}{2} \right)

Таким образом, при a \in \left(-\dfrac{3}{2}; \ 0 \right) \cup \left(0; \ \dfrac{3}{2} \right) имеем три корня.

ответ: a \in \left(-\dfrac{3}{2}; \ 0 \right) \cup \left(0; \ \dfrac{3}{2} \right)


Найдите значения параметра а, при которых уравнение (x+1)|x-2|=a^2 имеет три корня.
4,5(92 оценок)
Ответ:
Mixachu
Mixachu
02.03.2021

Примеры

Неравенства с модулем

|x^2 - 2x + 2| + |2x + 1| <= 5

Линейные

7x - 6 < x + 12

С квадратом

-3x^2 + 2x + 5 <= 0

Со степенью

2^x + 2^3/2^x < 9

С кубом (неравество третьей степени)

2x^3 + 7x^2 + 7x + 2 < 0

С кубическим корнем

cbrt(5x + 1) - cbrt(5x - 12) >= 1

С натуральным логарифмом

(ln(8x^2 + 24x - 16) + ln(x^4 + 6x^3 + 9x^2))/(x^2 + 3x - 10) >= 0

Иррациональные с квадратным корнем

sqrt(x - 2) + sqrt(x - 5) <= sqrt(x- 3)

Показательные неравенства

8^x + 18^x > 2*27^x

Логарифмические неравенства

log(((7 - x)/(x + 1))^2)/log(x + 8) <= 1 - log((x + 1)/(x - 7))/log(x + 8)

Тригонометрические

tg(x - pi/3) >= -sqrt(3)

Квадратное неравенство

25x^2 - 30x + 9 > 0

С четвёртой степенью

(x - 6)^4*(x - 4)^3*(x + 6)/(x - 7) < 0

С дробью

2x^2 - 15x + 35 - 30/x + 8/x^2 >= 0

Решение с целыми числами

(4x^2 - 3x - 1)/(2x^2 + 3x + 1) > 0

Пошаговое объяснение:

4,6(90 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ