Из Москвы в 8 часов утра отправился поезд со скоростью 58 км/ч. В 11ч. утра вслед за ним отправился другой поезд со скоростью 64 км/ч. На каком
расстоянии эти поезда будут друг от друга в 3 ч. дня ?
Решение задачи поэтапно:
1 этап)Объяснение
3 часа дня значит 15 часов
2 этап)Решение
1) 15 - 8 = 7 (ч) - время в пути первого поезда;
2) 58 * 7 = 406 (км) - проедет первый поезд за 7 часов;
3) 15 - 11 = 4 (ч) - время в пути второго поезда;
4) 64 * 4 = 256 (км) - проедет второй поезд за 4 часа;
5) 406 - 256 = 150 (км) - расстояние между поездами в 3 часа дня.
Окончательный ответ: 150 км.
Даны точки А(-3; -2; -1), В(-1; -4; -5), С(-4; 0; 0).
Для составления уравнения плоскости используем формулу:
x - xA y - yA z - zA
xB - xA yB - yA zB - zA
xC - xA yC - yA zC - zA = 0.
Подставим данные и упростим выражение:
x - (-3) y - (-2) z - (-1)
(-1) - (-3) (-4) - (-2) (-5) - (-1)
(-4) - (-3) 0 - (-2) 0 - (-1) = 0.
x - (-3) y - (-2) z - (-1)
2 -2 -4
-1 2 1 = 0.
(x - (-3))(-2·1-(-4)·2) – (y - (-2))(2·1-(-4)·(-1)) + (z - (-1))(2·2-(-2)·(-1)) = 0.
6(x - (-3)) + 2(y - (-2)) + 2(z - (-1)) = 0.
6x + 2y + 2z + 24 = 0, сократим на 2.
3x + y + z + 12 = 0.
Находим вектор DE: (-11-(-7); 10-2; 13-5) = (-4; 8; 8).
Каноническое уравнение прямой DE:
(x + 7)/(-4) = (y - 2)/8 = ((z - 5)/8 = t.
Отсюда получаем параметрические уравнения прямой:
x = -4t - 7,
y = 8t + 2,
z = 8t + 5.
Подставим их в уравнение плоскости:
-12t - 21 + 8t + 2 + 8t + 5 + 12 = 0,
4t = 2, t = 2/4 = 1/2.
Это значение подставляем в параметрические уравнения.
x = -4*(1/2) - 7 = -9,
y = 8*(1/2) + 2 = 6,
z = 8*(1/2) + = 9.
2. 250-115= 135(книг) в октябре
3. 235-115=120(книг) в декабре