4b(5a-b)-(5a-2)(5a+2)=20ab-4b²-(25a-4)=20ab-4b²-25a+4=-4b²+20ab-25a²+4 = -(4b²-20ab+25a²)+4= -(2b-5a)²+4 любое действительное число в квадрате всегда больше либо равно нулю, то есть (2b-5a)²≥0, значит -(2b-5a)²≤0 следовательно для выражения -(2b-5a)² наибольшем значением будет 0, следовательно для выражения -(2b-5a)²+4 наибольшим будет 0+4=4 ОТВ: 4
2) 2a²-2ab+b²-2a+2=а²+а²-2ab+b²-2a+2=(а²-2ab+b²)+a²-2a+2= (a-b)²+(a²-2a+2) выше уже было сказано: (a-b)²≥0 рассмотрим функцию у=a²-2a+2 - парабола найдем нули a²-2a+2=0 D=4-4*2=-4<0 Дискриминант <0, ветви параболы направлены вверх, значит наименьшее значение будет в вершине параболы:
4b(5a-b)-(5a-2)(5a+2)=20ab-4b²-(25a-4)=20ab-4b²-25a+4=-4b²+20ab-25a²+4 = -(4b²-20ab+25a²)+4= -(2b-5a)²+4 любое действительное число в квадрате всегда больше либо равно нулю, то есть (2b-5a)²≥0, значит -(2b-5a)²≤0 следовательно для выражения -(2b-5a)² наибольшем значением будет 0, следовательно для выражения -(2b-5a)²+4 наибольшим будет 0+4=4 ОТВ: 4
2) 2a²-2ab+b²-2a+2=а²+а²-2ab+b²-2a+2=(а²-2ab+b²)+a²-2a+2= (a-b)²+(a²-2a+2) выше уже было сказано: (a-b)²≥0 рассмотрим функцию у=a²-2a+2 - парабола найдем нули a²-2a+2=0 D=4-4*2=-4<0 Дискриминант <0, ветви параболы направлены вверх, значит наименьшее значение будет в вершине параболы:
8x+8x>9
16x>9
x>9/16
x∈(9/16;∞)