М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
watercolour3
watercolour3
29.05.2020 07:16 •  Математика

Решить уравнение относительно z, ln(2x-3y-z)+(z+1)*(z-4)=0

👇
Открыть все ответы
Ответ:
Pashayka
Pashayka
29.05.2020
1. Имеем дело с дифференциальным уравнением второго порядка с правой частью.
Нужно найти общее решение неоднородного уравнения:
       
                             yо.н. = уо.о. + уч.н.

Где уо.о. - общее решение однородного уравнения, уч.н. - частное решение.

Найдём общее решение соответствующего однородного уравнения.
y''+6y'+9y=0

Перейдем к характеристическому уравнению, осуществив замену y=e^{kx}.

k^2+6k+9=0;\\ \\ (k+3)^2=0\\\\ k_{1,2}=-3

Общее решение однородного уравнения: yo.o. = C_1e^{-3x}+C_2xe^{-3x}

Теперь нужно найти частное решение неоднородного уравнения. Правую часть исходн. ДУ отметим как за две функции, т.е. f_1(x)=3x и f_2(x)=-8e^x

Рассмотрим функцию f_1(x)=3x
\alpha =0;~~~ P_n(x)=3x~~~\Rightarrow~~~ n=1
Сравнивая \alpha с корнями характеристического уравнения, и, принимая во внимания, что n=1, частное решение будем искать в виде.
yч.н.₁ = Ax+B

И, вычислив первую и вторую производную: y'=A;~~~ y''=0, подставим в исходное уравнение без функции f_2(x).
9Ax+6A+9B=3x

Приравниваем коэффициенты при степени х:
\displaystyle \left \{ {{9A=3} \atop {6A+9B=0}} \right. ~~~\Rightarrow~~~~ \left \{ {{A=3} \atop {B=-2/9}} \right.

уч.н.₁ = (x/3) - 2/9 

Рассмотрим теперь функцию f_2(x)=-8e^x
\alpha=1;~~~ P_n(x)=-8~~~~\Rightarrow~~~~ n=0
Аналогично сравнивая \alpha с корнями характеристического уравнения и принимая во внимая, что n=0, частное решение будем искать в следующем виде:
уч.н.₂ = Ae^x

И тогда первая и вторая производная равны соответственно y'=Ae^x и y''=Ae^x

Ae^x+6Ae^x+9Ae^x=-8e^x\\ \\ 16A=-8\\ \\ A=- \frac{1}{2}

Тогда уч.н.₂ = -(1/2) * eˣ

И, воспользовавшись теоремой о суперпозиции, частное решение неоднородного уравнения: уч.н. = уч.н.₁ + уч.н.₂ = (x/3)- (2/9) - (1/2) * eˣ

Тогда общее решение неоднородного уравнения:

           y_{O.H.}=C_1e^{-3x}+C_2xe^{-3x}+ \frac{x}{3} - \frac{2}{9} - \frac{e^x}{2}

Задание 2.
Это ДУ третьего порядка, однородное. Переходим к характеристическому уравнению, сделав замену Эйлера y=e^{kx}.
k^3+3k^2+3k+1=0\\ (k+1)^3=0\\ k=-1

Общее решение однородного уравнения: y=C_1e^{-x}+C_2xe^{-x}+C_3x^2e^{-x}

y'=-C_1e^{-x}+C_2e^{-x}-C_2xe^{-x}+2C_3xe^{-x}-C_3e^{-x}\\ y''=C_1e^{-x}-C_2e^{-x}-C_2e^{-x}+C_2xe^{-x}+2C_3e^{-x}-2C_3xe^{-x}+C_3e^{-x}=\\ =C_1e^{-x}-2C_2e^{-x}+C_2xe^{-x}-2C_3xe^{-x}+3C_3e^{-x}
Найдем частное решение, подставляя начальные условия.
\begin{cases}
 & \text{ } C_1=-1 \\ 
 & \text{ } -C_1+C_2-C_3=2 \\ 
 & \text{ } C_1-2C_2+3C_3=3 
\end{cases}~~~\Rightarrow~~~~\begin{cases}
 & \text{ } C_1=-1 \\ 
 & \text{ } C_2=7 \\ 
 & \text{ } C_3=6 
\end{cases}

Частное решение: y=-e^{-x}+7xe^{-x}+6x^2e^{-x}
4,8(95 оценок)
Ответ:
akvilon76
akvilon76
29.05.2020
Мин наслаждением үткәрде кышкы каникуллар. Бу кышкы каникуллар вакытында мин моңа кадәр безнең кызлар. Каникуллар башланды берничә көн эчендә Яңа елга кадәр, кебек тоелды миңа алар барырга бик озак. Без барыбыз да бергә наряжали чыршы. Әзерләндек Яңа елда табыны әзерләдек. Веселись, биеделәр, ә курантлар без загадали теләк. Бик күңелле һәм шатлыклы каршы алды Яңа елны. Ә январские көннәрендә барыбыз да бергә булдык дождливость урамга. Зацепили тюбинг өчен машинасын, һәм безнең катали тизлек белән җил. Бу шулай иде шәп. Менә шулай мин үткәрде кышкы каникулда, алар булмаса, мондый озын, әмма насладится бу каникулами миңа җитте. Шулай булгач, кала тупларга көч имтихан бирергә һәм диплом алу.
4,7(96 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ