М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Katherine1236
Katherine1236
09.09.2021 10:59 •  Математика

Выполните действия 5/6*(3/10+1 1/2); 1 1/5*(3/4-1/3); (1 1/3-5/6)*18; 11/15+2/3*9/10

👇
Ответ:
mike961
mike961
09.09.2021
Все на прикрепленном фото 
Выполните действия 5/6*(3/10+1 1/2); 1 1/5*(3/4-1/3); (1 1/3-5/6)*18; 11/15+2/3*9/10
4,5(80 оценок)
Открыть все ответы
Ответ:
AnnaGlyuza0436
AnnaGlyuza0436
09.09.2021
Сначала найдём производную:
y*=(x^2(1-x)^2)*=(x^2)*(1-x)^2+x^2((1-x)^2)*=2x(1-x)^2+x^2*2(1-x)*(1-x)*=2x(1-2x+x^2)+x^2(2-2x)*(-1)=2x-4x^2+2x^3-2x^2+2x^3=4x^3-6x^2+2x
Теперь то, что получилось (жирный шрифт) приравниваем к нулю и решаем:
4x^3-6x^2+2x=0
x(4x^2-6x+2)=0
x=0; 4x^2-6x+2=0
         2x^2-3x+1=0
         D=(-3)^2-4*2*1=1
         x1=1
         x2=0.5
Дальше строим ось X и отмечаем точки в порядке возрастания.
Надеюсь вам знаком метод интервалов.
в результате получается, что Xмин = 0 и 1, а Xмах=0,5
Теперь подставляем в исходное уравнение (y=x^2(1-x)^2)
Yнаим=Y(0)=0^2(1-0)^2=0
Yнаиб=Y(0.5)=0.5^2(1-0.5)^2=0.25*0.25=0.0625
ответ: Yнаим=0; Yнаиб=0,0625
4,6(65 оценок)
Ответ:
Испан1
Испан1
09.09.2021

Пусть длина палки равна 1. По условию задачи, если взять любые три кусочка, то сумма длин двух наименьших из них не больше длины самого длинного из них. Расположим кусочки в порядке убывания их длин: a_1\ge a_2\ge\ldots \ge a_{15}. Требуется доказать, что a_1\frac{1}{3}. Предположим противное, то есть что a_1\le \frac{1}{3}. По условию a_2+a_3\le a_1\le \frac{1}{3}. При этом 2a_3\le a_2+a_3\le \frac{1}{3}\Rightarrow a_3\le \frac{1}{6} Идем по цепочке дальше. По условию a_4+a_5\le a_3\le\frac{1}{6}, при этом a_5\le\frac{1}{12}.. Продолжая этот процесс, получаем a_6+a_7\le \frac{1}{12};\ a_8+a_9\le \frac{1}{24};\ a_{10}+a_{11}\le\frac{1}{48};\ a_{12}+a_{13}\le\frac{1}{96};\ a_{14}+a_{15}\le \frac{1}{192}. Суммируя, получаем a_1+a+2+a_3+\ldots+a_{15}\le\frac{1}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}=\frac{191}{192} Полученное противоречие (ведь сумма длин кусочков должна равняться 1) доказывает требуемое утверждение.


Замечание. Для тех, кто устал от этих выкладок - простое рассуждение без чисел. Первый (самый длинный кусок)  лежит в первой трети отрезка [0;1]. Остаются две трети отрезка [0;1]. Пусть это отрезок [b;c]. Второй и третий куски лежат в его первой половине, а поскольку третий занимает не больше половины места, четвертый и пятый займут не больше половины от правой половины, и так далее. Сами додумайте до конца.    

4,6(57 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ