сложение рациональных чисел — это сложение целых и дробных положительных и отрицательных чисел. сложение положительных (натуральных) чисел и дробей нами изучено, поэтому рассмотрим подробно сложение положительных и отрицательных чисел и дробей с одинаковыми и разными знаками.
при сложении рациональных чисел с разными знаками можно подразумевать, что положительное число — это ваш «доход», а отрицательное число — это ваш «долг». результатом вычисления будет то, что у вас останется от «дохода», когда вы отдадите «долг».
правило. при сложении двух чисел с разными знаками из большего модуля вычитают меньший и перед полученным числом ставят знак того слагаемого, модуль которого больше.
два знака подряд в арифметических действиях не ставятся, их нужно разделять скобками, значит, отрицательное число в сумме чисел после знака «+» нужно всегда брать в скобки.
при сложении чисел с разными знаками и результате возможны такие варианты:
число положительное больше числа отрицательного (ваш «доход» больше вашего «долга»), тогда сумма будет со знаком «плюс» («+»).число положительное меньше числа отрицательного (ваш «доход» меньше вашего «долга»), тогда сумма будет со знаком «минус» («-»).правило. при сложении двух чисел с одинаковыми знакамискладывают их модули и перед полученным числом ставят их общий знак.
при сложении чисел с одинаковыми знаками в результате возможны такие варианты:
числа положительные (ваш «доход» увеличивается еще на некоторый «доход»), тогда сумма будет со знаком «плюс» («+»).числа отрицательные (ваш «долг» увеличивается еще на величину некоторого вашего «долга»), тогда сумма будет со знаком «минус» («-»).при вычислении числовых и буквенных выражений действия с положительными и отрицательными числами можно выполнять «шаг за шагом» (по порядку записи слагаемых), тогда используются предыдущие два правила. можно также производить вычисления с законов сложения (переместительного и сочетательного).
правило. чтобы вычислить сумму рациональных чисел, нужно отдельно сложить все положительные числа (заключив в скобки и поставив перед скобкой знак «+») и отдельно сложить все отрицательные числа(заключив в скобки и поставив перед скобкой знак «-»). затем из большей по модулю суммы вычесть меньшую по модулю сумму, а перед полученным результатом поставить знак той суммы, модуль которой больше.
особенности сложения рациональных чисел с 0нуль — это отсутствие у вас «дохода» и «долга».
если с 0 складывается положительное число, то сумма равна вашему «доходу» (со знаком «+»). например: 0 + 17 — 17.если с 0 складывается отрицательное число, то сумма равна вашему «долгу» (со знаком «-»). например: 0 + (- 29) = -29.если два слагаемых — нули, то и сумма равна 0. например: 0 + 0 = 0.Из тождественного равенства дробей на ОДЗ (x = 2, x = −3) при равных знаменателях
следует тождественное равенство числителей
a(x + 3) + b(x − 2) = 2 или (a + b)x + 3a − 2b = 2 =⇒ a + b = 0 и 3a − 2b = 2 =⇒
a = −b и −5b = 2 =⇒ b = −0, 4; a = 0, 4.
ответ. 0.
a3 − 3ab2 4b + a
Пример 2.3.11. Найдите значение дроби 2 b + 3b3
, если =2
4a 5a − 7b
4b + a
Решение. Из условия = 2 выразим a через b :
5a − 7b
4b + a = 10a − 14b =⇒ 9a = 18b =⇒ a = 2b.
8b3 − 6b3 2b3 2
Подставим a = 2b в исходную дробь : 3 + 3b3
= 3
= .
16b 19b 19
2
ответ. .
19