Трапеция равнобедренная - рассмотрим левую половину. Из вершинs D опускаем перпендикуляр DE и получаем прямоугольный Δ ADE. Так как ∠EAD=45°, то и ∠ADE=45° (или 180-90-45 = 45). Треугольник равнобедренный. Катет АЕ вычислим по формуле AE = (AB-CD)/2 = (17-5)2 = 6. Высота трапеции h = DE=AE = 6. Площадь трапеции по формуле через среднюю линию и высоту. S = (a+b)/2 *h = (17+5)/2 *6 = 11*6 = 66 - ОТВЕТ Также можно вычислить через площади боковых треугольников и прямоугольника в центре. S = 2* (6*6)/2 + 5*6 = 36+30 = 66 - ОТВЕТ тот же.
1.В равнобокой трапеции АБСД, где АБ=ЦД=26, а БЦ=7 проведём высоту БК на основание АД. Тогда в треугольнике АБК, где угол К=90, а тангенс угла А = 2.4 имеем: БК/АК=2.4 или БК=2.4*АК. По теореме Пифагора БК^2+АК^2=АБ^2. Подставляя предыдущее равенствополучим: (2.4*АК) ^2+АК^2=АБ^2 или 6.76*АК^2=26^2=676 Отсюда АК^2=100 АК=10. 2. Проведём высоту ЦМ на основание АД. Тогда в прямоугольнике КБЦМ КМ=БЦ=7. МД=АК=10, поскольку треугольник МЦД симметричен треугольнику КБА относительно прямой, проходящей через середины оснований равнобокой трапеции. 3. АД=АК+КМ+МД=10+7+10=27. если точно то так извини если не верно(