Часто процесс решения неравенств представляет собой переход от исходного неравенства к неравенствам, имеющим те же решения, но которые проще найти. Другими словами, исходное неравенство с определенных преобразований заменяется так называемым равносильным неравенством, решение которого совпадает с решением исходного, и которое мы можем отыскать. В этой статье мы как раз поговорим о равносильных неравенствах и о равносильных преобразованиях, позволяющих получать равносильные неравенства.
Пусть от момента выезда третьего велосипедиста до встречи со вторым часов, а скорость третьего равна v км/ч. Условие встречи со вторым: 16(t + 1) = vt (т.к. у второго была фора в 1 час) Условие встречи с первым: 18(t + 2 + 4) = v(t + 4) (т.к. у первого была фора в 2 часа, а третий проехал t + 4 часа).
16(t + 1) = vt 18(t + 6) = v(t + 4) = vt + 4v
Подставим значение vt из первого уравнения во второе: 18(t + 6) = 16(t + 1) + 4v 4v = 18t + 108 - 16t - 16 = 2t + 92 v = t/2 + 23
Подставляем значение v в первое уравнение: 16t + 16 = t^2/2 + 23t 32t + 32 = t^2 + 46t t^2 + 14t - 32 = 0 t1 = -16; t2 = 2
Первый корень не подходит по условию (время до встречи должно быть положительным), поэтому t = 2.
Часто процесс решения неравенств представляет собой переход от исходного неравенства к неравенствам, имеющим те же решения, но которые проще найти. Другими словами, исходное неравенство с определенных преобразований заменяется так называемым равносильным неравенством, решение которого совпадает с решением исходного, и которое мы можем отыскать. В этой статье мы как раз поговорим о равносильных неравенствах и о равносильных преобразованиях, позволяющих получать равносильные неравенства.
Пошаговое объяснение:
надеюсь правельно