1. Найдите производную функции f(x)=(x-1)*√(x -1) и f' (3)=?
Производную ищем по формуле: (UV)'= U"V + UV'
f'(x) = (x-1)' *√(x -1) + (x-1)* (√(x -1) )'= √(x -1) + (x -1)*1/ (2√(x -1)) =
=(2(x -1) + x - 1)/2√(x -1) = (2x -2 +x -1)/2√(x -1) = (3x -3)/2√(x -1) ,
f'(3) = 6/2√2 = 6√2/4 = 1,5√2
2. найти производную f(z)=√(z-2)/z и f'(2)
Производную ищем по формуле : (U/V)' = (U'V - UV')V²
f'(z) = (1/2√(z-2) *z- √(z -2))/z² = (4 - z)/2z²*√(z - 2)
f'(2) = не существует.
Подробнее - на -
Пошаговое объяснение:
ответ:В математике последовательность обозначают маленькой латинской буквой, а каждый отдельный ее элемент – той же буквой с числовым индексом равным порядковому номеру этого элемента.
То есть, если последовательность
3
;
6
;
12
;
24
;
48
…
обозначить как
a
n
, то можно записать, что
a
1
=
3
,
a
2
=
6
,
a
3
=
12
,
a
4
=
24
и так далее.
Пошаговое объяснение:Иными словами, для последовательности
a
n
=
{
3
;
6
;
12
;
24
;
48
;
96
;
192
;
384
…
}
.
порядковый номер элемента
1
2
3
4
5
6
7
8
…
обозначение элемента
a
1
a
2
a
3
a
4
a
5
a
6
a
7
a
8
…
значение элемента
3
6
12
24
48
96
192
384
…