Площадь 1-ой фигуры 16см2
Площадь 2-ой фигуры 16см2.
Пошаговое объяснение:
1. Фигура.
1 фигуру делим на 1 квадрат со сторонами а = 2см и второй прямоугольник со сторонами а= 3см и b= 4 см.
Теперь находим площади отдельно для каждой фигуры и складываем.
S□= a×4
S= a×b
a1 = 2см
S1= ?
S1= 2см×2см= 4 см2
а2 = 3см
b2 = 4см
S2 =?
S2= 3см × 4см=12 см2
Sобщ= S1+ S2
Sобщ=4+12= 16 см2
Эту же 1-ую фигуру делим на 2 прямоугольника со сторонами а1= 5см, b1 = 2см и второй со сторонами а2= 3см, b2 = 2см. Теперь находим площадь фигур по формуле :
S= a×b
a1= 5см
b1= 2см
S1= ?
S1 = 5×2=10 см2
a2= 3см
b2=2см
S2= ?
S2= 3×2= 6 см2
Sобщ= S1+ S2
Sобщ= 10+6= 16 см
2 . Фигура.
Находим площадь аналогично нахождению площади первой фигуры .
2см+2см+1см=5см - длина 1 -ой фигуры.
а1 = 5см
b1 = 2 см
S1=?
S1= 5×2= 10см2
а2= 3см
b2= 2см
S2=?
S2= 3×2=6см2
Sобщ= S1+S2
Sобщ= 10+6=16см 2
Делим на 3 фигуры : 1 квадрат и 2 прямоугольника и находят площадь аналогично площади предыдущих фигур.
Рисунки прилагаются.
Подробнее - на -
Для 3217:6 частное 536, остаток 1.
Для 1984:3 частное 661, остаток 1.
Для 7198:4 частное 1799, остаток 2.
Пошаговое объяснение:
3217 | 6
30 | 536
21
18
37
36
1
Для 3217:6 частное 536, остаток 1. Проверим:
536·6+1=3216+1=3217 верно.
1984 | 3
18 | 661
18
18
4
3
1
Для 1984:3 частное 661, остаток 1. Проверим:
661·3+1=1983+1=1984 верно.
7198 | 4
4 | 1799
31
28
39
36
38
36
2
Для 7198:4 частное 1799, остаток 2. Проверим:
1799·4+2=7196+2=7198 верно.