Из условия следует, что ни у кого нет троих не знакомых с ним, а также то, что нет тройки попарно незнакомых. В противном случае к ним добавляем каких-то двоих, и этих пятерых будет не рассадить.
Из условия следует, что ни у кого нет троих не знакомых с ним, а также то, что нет тройки попарно незнакомых. В противном случае к ним добавляем каких-то двоих, и этих пятерых будет не рассадить.Рассмотрим дополнение графа знакомств в полном графе -- это удобно, так как рёбер мало. Степень каждой вершины не больше 2, и в графе нет треугольников. Рассмотрим связную компоненту. Это или линейный граф (возможно, из одной вершины), или цикл. Будем в каждой компоненте выбирать подмножество вершин, в котором нет соединений. Если мы в сумме наберём 12 человек, то задача решена: представители разных компонент между собой знакомы.
Из условия следует, что ни у кого нет троих не знакомых с ним, а также то, что нет тройки попарно незнакомых. В противном случае к ним добавляем каких-то двоих, и этих пятерых будет не рассадить.Рассмотрим дополнение графа знакомств в полном графе -- это удобно, так как рёбер мало. Степень каждой вершины не больше 2, и в графе нет треугольников. Рассмотрим связную компоненту. Это или линейный граф (возможно, из одной вершины), или цикл. Будем в каждой компоненте выбирать подмножество вершин, в котором нет соединений. Если мы в сумме наберём 12 человек, то задача решена: представители разных компонент между собой знакомы.Для линейного графа раскрасим вершины через одну, и возьмём тот цвет, представителей которого не меньше. Это даст как минимум половину. Если цикл имеет чётную длину, то мы также выбираем половину -- через одного. Наконец, пусть цикл имеет длину 2k+1, где k>=2. Тогда можно взять k человек с номерами 2, 4, ... , 2k. Доля числа взятых равна k/(2k+1)>=2/5. Отсюда следует, что мы можем взять как минимум 2/5 от общего числа, а это и есть 12. Они попарно знакомы.
НОД (a, b) = 3 * 5 = 15 - наибольший общий делитель
НОК (a, b) = 3 * 5 * 5 * 7 = 525 - наименьшее общее кратное
2) а = 2 * 2 * 2 * 3 * 3 * 5 * 5 * 5 * 5
b = 2 * 2 * 3 * 3 * 3 * 5 * 5
НОД (a, b) = 2 * 2 * 3 * 3 * 5 * 5 = 900 - наибольший общий делитель
НОК (a, b) = 2 * 2 * 2 * 3 * 3 * 3 * 5 * 5 * 5 * 5 = 135000 - наименьшее общее кратное