НОД
Разложим на простые множители 14
14 = 2 • 7
Разложим на простые множители 35
35 = 5 • 7
Выберем одинаковые простые множители в обоих числах.
7
Находим произведение одинаковых простых множителей и записываем ответ
НОД (14; 35) = 7 = 7
НОК
Разложим на простые множители 14
14 = 2 • 7
Разложим на простые множители 35
35 = 5 • 7
Выберем в разложении меньшего числа (14) множители, которые не вошли в разложение
2
Добавим эти множители в разложение бóльшего числа
5 , 7 , 2
Полученное произведение запишем в ответ.
НОК (14, 35) = 5 • 7 • 2 = 70
ответ: В 10 раз
1) Пусть а - первый член геометрической прогрессии
2) Тогда третий член прогрессии: а·q²
3) Значит, сумма первого и третьего членов будет (а+а·q²) или а(1+q²)=10
4) Второй член прогрессии выразится как а·q
5) Четвёртый член выразится как а·q³
6) Тогда сумма второго и четвёртого будет а·q+а·q³ или а(q+q³)=30
7) Разделите выражение (3) на выражение (6). Точнее, левую часть на левую, а правую на правую. Вы должны получить :
(1+q²)/(q+q³)=(1/3) или 3(1+q²)=(q+q³) или 3(1+q²)=q(1+q²) ⇒q=3
8) По условию известно, что сумма первого и третьего равна 10:
а(1+q²)=10 или а(1+3²)=10 ⇒ 10·а=10 ⇒ а=1( это ответ)
УДАЧИ!
Пошаговое объяснение:
3•2,4+2,5•0,6=7,2+1,5=8,7