1) Найти области определения и значений данной функции f.
Для аргумента и функции нет ограничений: их значения - вся числовая ось.
2) Выяснить, обладает ли функция особенностями, облегчающими исследование, т. е. является ли функция f: а) четной или нечетной:
f(-x)=(-x)³−1 = -x³−1 = -(x³+1). Значит, функция не чётная и не нечётная.
б) не периодическая.
3) Вычислить координаты точек пересечения графика с осями координат:
- пересечение с осью Оу (х = 0), у = -1.
- пересечение с осью Ох (у = 0), x³−1 = 0, x³ = 1, x = ∛1 = 1.
4) Найти промежутки знакопостоянства функции f.
На основе нулей функции имеем:
- функция отрицательна при х < 1 (x ∈ (-∞; 1),
- функция положительна при х > 1 (x ∈ (1; +∞).
5) на каких промежутках функция f возрастает, а на каких убывает.
Найти точки экстремума, вид экстремума (максимум или минимум) и вычислить значения f в этих точка.
Находим производную функции и приравниваем нулю.
y' = 3x² = 0, x = 0 это критическая точка. Находим знаки производной левее и правее этой точки. Так как переменная в квадрате, то знак её положителен. Значит, функция на всей области определения возрастает.
Поэтому не имеет ни минимума, ни максимума.
6) Вторая производная y'' = 6x. Поэтому в точке х = 0 функция имеет перегиб. При x < 0 график функции выпуклый, при x > 0 вогнутый.
7) Асимптот функция не имеет.
ответ: - 6; 2/13; 2,5; 6.
Пошаговое объяснение:
1)(x+6)(x-1)-(x+3)(x-4)=5x
х²-х+6х-6-(х²-4х+3х-12)=5х
х²-х+6х-6-(х²-х-12)=5х
х²-х+6х-6-х²+х+12=5х,
6х+6=5х,
6х-5х=-6,
х=-6.
ответ: -6.
2)14х² -14х² +21х -8х+12=14
21х-8х=14-12
13х=2
х=2 :13
х=2/13
ответ: х=2/13
3)24x + 8x^2 + 30 + 10x= 44x +55 - 8x^2 - 10x -5
24x + 10x - 44x + 10x +8x^2 + 8x^2 +30 - 55 +5=0
16x^4 -20 =0
4x^2 - 10 =0
4x^2 =10
x^2 = 2.5
x = корень из 2,5 или x= - корень из 2,5
4)(х+6)(х-3)-(х+3)(х+9)=9
(х^2-3x+6x-18) - (x^2+9x+3x+27)=9
х^2-3x+6x-18-x^2-9x-3x-27=9
-9x=54/(-9)
x=6
7 1/3×0,75=1 5/6×0,6х
22/3×75/100=11/6×6/10х
22/3×3/4=11/6×3/5х
11/2=11/6×3/5х
3/5х=11/2÷11/6
3/5х=11/2×6/11
3/5х=6/2
3/5х=3
х=3÷3/5
х=3×5/3
х=5