1: В магазине продали 10 л воды. После продажи осталось 30 л. Сколько литров воды было в магазине до продажи? Решение: 10+30=40 (л.) ответ: 40 л. воды было в магазине до продажи. 2: На столе было 10 огурцов. Из них съели 4 огурца. Солько огурцов на столе осталось? Решение: 10-4=6 (о.) ответ: 6 огурцов осталось на столе было 90 шаров. Сколько шаров продали, если к концу дня осталось 80 шаров? Решение: 90-80=10 (ш.) ответ: 10 шаров продали.
1). На третьей делянке растет на 442-423=19 саженцев больше, чем на первой. 2). Пусть х саженцев растет на первой делянке, тогда х+19 саженцев растет на третьей делянке. По условию задачи на второй делянке растет 423-х саженца и всего растет 628 саженцев. Составим уравнение: х+х+19+(423-х)=628; 2х+(423-х)=628-19; 2х+(423-х)=609; 2х-х+423=609; х+423=609; х=609-423; х=186. 3). На второй делянке 423-186=237 саженца. 4). На третьей делянке 186+19=205 саженцев. ответ: 186; 237; 205.
A: последовательность содержит ровно 4 единицы Таких последовательностей "цэ из 12 по 4" = 12!/(4!8!) = 495
B: на 4 месте стоит единица. Таких последовательностей 2^11.
C: последовательность не содержит двух рядом стоящих единиц. Пусть F(n) - количество последовательностей длины n, не содержащих двух рядом стоящих единиц. Найдём F(n+2). В F(n+2) входят последовательности длины (n-1), оканчивающиеся на 0, к которым можно приписать 1 (таких посл-тей F(n)) и все посл-ти длины (n-1), к которым припишем ноль (таких посл-тей F(n+1)). F(n+2) = F(n+1) + F(n) Т.к. F(1) = 2, F(2) = 3, то F(n) - (n + 2)-й член последовательности Фибоначчи Ф(n). F(12) = Ф(14) = 144