подберем нужное значение х:
пусть х = 7, тогда 9 + 7 должно быть равно 14 - не подходит
пусть х = 5, тогда 9 + 5 = 14 - подходит
пусть х = 1, тогда 9 + 1 не равно 14 - не подходит
пусть х = 3, тогда 9 + 3 не равно 14
х = 5
х = 7, 7 + 7 не равно 10 - не подходит
х = 5, 5 + 7 не равно 10 - не подходит
х = 1, 1 + 7 не равно 10 - не подходит
х = 3, тогда 3 + 7 = 10 - подходит
х = 3
х = 7, 7 + 5 не равно 6 - не подходит
х = 5, 5 + 5 не равно 6 - не подходит
х = 1, 1 + 5 = 6 - подходит
х = 3, 3 + 5 не равно 6 - не подходит
х = 7, 7 + 3 не равно 4 - не подходит
х = 5, 5 + 3 не равно 4 - не подходит
х = 1, 1 + 3 = 4 - подходит
х = 3, 3 + 3 не равно 4 - не подходит
х = 1
Пошаговое объяснение:
Диагональ прямоугольника равна по теореме Пифагора :
sqrt ( 6^2+ 8^2) =10( см). В прямоугольном треугольнике с высотой пирамиды гипотенуза равна 13 см, один из катетов - 5см ( половина диагонали прямоугольника). Высота по теореме Пифагора равна sqrt(13^2 - 5^2)=12(см). Площадь полной поверхности складывается из площади основания, площадей двух пар равных боковых граней. Площадь основания равна 6х8=48 (кв. см). Апофемы ( высоты боковых граней ) находятся из прямоугольных треугольников с высотами пирамиды. Вторые катеты равны половине сторон основания. Т.о. одна апофема по теореме Пифагора равна sqrt (12^2 + 4^2)=4 sqrt 10. Другая апофема равна sqrt(12^2 +3^2)=sqrt 153. Площадь боковой грани с первой апофемой равна 6х4sqrt 10/2=12 sqrt 10. Площадь боковой грани со второй апофемой равна 8хsqrt 153 /2= 4 sqrt 153. И площадь полной поверхности пирамиды равна ( 48 + 24 sqrt 10+ 8 sqrt 153) кв. см.
2 задача. 2 боковые ребра находятся из прямоугольных треугольников, содержащих высоту пирамиды, а второй катет - половина известной диагонали (6:2=3). Мы получаем египетский треугольник : катеты равны 4 см и 3 см , поэтому боковое ребро = 5 см. Чтобы найти оставшиеся боковые рёбра, надо
Разрезать ровно посередине каждую сторону оставшейся части квадрата 5 * 5
Получится 4 равные клетчатые фигуры по 6 клеток в каждой.
2-ой вариант разрезания:
Резать от угла большого квадрата к углу вырезанного квадрата. Всего таких резов 4
Получится 4 равные фигуры по 6 клеток в каждой.
Каждые 2 половинки клетки при подсчёте оставшихся клеток дадут нам одну клетку.