С циркуля и линейки постройте треугольник со сторонами:
1) 5 см, 6 см и 4 см;
2) 2 см; 2 см и 2 см.
Решение 1
1 действие: строим отрезок AB = 6 см;
2 действие: строим окружность, с радиусом равным 5 см, с центром в точке A;
3 действие: строим окружность, с радиусом равным 4 см, с центром в точке B;
4 действие: точку С ставим в одной любой точке пересечения окружностей;
5 действие: проводим отрезки AC = 5 см и BC = 4 см.
Решение рисунок 1
Решение 2
1 действие: строим отрезок AB = 2 см;
2 действие: строим две окружности, радиус которых равен 2 см, с центрами в точках A и B.
3 действие: точку С ставим в одной любой точке пересечения окружностей;
4 действие: проводим отрезки AC = BC = 2 см.
Решение рисунок 1
ответ: функция имеет минимум, равный -3/8, в точке M(1/8; 3/8; -3/8). Максимума функция не имеет.
Пошаговое объяснение:
1. Находим первые и вторые частные производные и после приведения подобных членов получаем:
du/dx=6*x-4*y-2*z, du/dy=-4*x+10*y+6*z-1, du/dz=-2*x+6*y+8*z+1, d²u/dx²=2, d²u/dy²=10, d²u/dz²=8, d²u/dxdy=-4, d²u/dydx=-4, d²u/dxdz=-2, d²u/dzdx=-2, d²u/dydz=6, d²u/dzdy=6.
2. Приравнивая нулю первые частные производные, получаем систему уравнений:
6*x-4*y-2*z=0
-4*x+10*y+6*z=1
-2*x+6*y+8*z=-1
Решая её, находим x=1/8, y=3/8, z=-3/8. Таким образом, найдены координаты единственной стационарной точки M (1/8; 3/8; -3/8).
3. Вычисляем значения вторых частных производных в стационарной точке:
d²u/dx²(M)=a11=6, d²u/dxdy(M)=a12=-4, d²u/dxdz(M)=a13=-2, d²u/dydx(M)=a21=-4, d²u/dy²(M)=a22=10, d²u/dydz(M)=a23=6, d²u/dzdx(M)=a31=-2, d²u/dzdy(M)=a32=6, d²u/dz²(M)=a33=8
4. Составляем матрицу Гессе:
H = a11 a12 a13 = 6 -4 -2
a21 a22 a23 -4 10 6
a31 a32 a33 -2 6 8
5. Составляем и вычисляем угловые миноры матрицы Гессе:
δ1 = a11 = 6, δ2 = a11 a12 = 44, δ3 = a11 a12 a13 = 192
a21 a22 a21 a22 a23
a31 a32 a33
6. Так как δ1>0, δ2>0 и δ3>0, то точка М является точкой минимума, равного u0=u(1/8; 3/8; -3/8)=-3/8.