всего 200 ак.; женщин 80 ак.; с бор. 70 ак.; с ус. 65 ак.; с ус. и бор. вместе ---? ак; Решение. 200 - 80 = 120 (ак.) --- мужчин (только у них можно ожидать усы и бороды); 120 - 25 = 95 (ак.) --- имеют усы и/или бороды (не имеющих по условию исключили); 70 + 65 = 135 (ак.) было бы, если бы они имели только усы и только бороды. 135 - 95 = 40 (ак.) имеют усы и бороды вместе, (так как общее число по условию имеющих усы и бороду превышает число мужчин академиков, обладающих усами и /или бородой). ответ: 40 мужчин-академиков имеют и бороду, и усы,
(8x^2-20x+16) / (4x^2+10x+7) <= a (8x^2-20x+16) / (4x^2+10x+7) - a <= 0 (8x^2-20x+16 - a*(4x^2+10x+7)) / (4x^2+10x+7) <= 0 ((8-4a)*x^2 - (20+10a)*x + (16-7a)) / (4x^2+10x+7) <= 0 Разложим на множители Знаменатель 4x^2+10x+7 = 0 D = 10^2 - 4*4*7 = 100 - 112 = -12 < 0 Корней нет, знаменатель всегда положителен. Значит, числитель должен быть не положителен при любом x (8-4a)*x^2 - (20+10a)*x + (16-7a) <= 0 (8-4a)*x^2 - 2(10+5a)*x + (16-7a) <= 0 Если квадратный трехчлен не принимает значений > 0 ни при каком x, значит, у него коэффициент при x^2 должен быть отрицательным 8 - 4a < 0; отсюда a > 2 А дискриминант должен быть D = 0, потому что неравенство имеет 1 корень. Если бы оно имело 2 корня, то на каком-то отрезке было бы > 0. А если бы оно не имело корней, то было бы везде строго < 0. Находим дискриминант D/4 = (10+5a)^2 - (8-4a)(16-7a) = 100+100a+25a^2-128+64a+56a-28a^2 = = -3a^2 + 220a - 28 = 0 Решаем это новое условие D/4 = 110^2 - (-3)(-28) = 12100 - 84 = 12016 a1 = (-110-√12016)/(-3) = (110+√12016)/3 ~ (110+109,62)/3 ~ 73,2 > 2 a2 = (-110 + √12016)/(-3) ~ 0,13 < 2 - не подходит. ответ: a = (110+√12016)/3
а если длина канала 170м, то 1 см=10м.