ДАНО Y = 2x³+3x²-5 ИССЛЕДОВАНИЕ 1. Область определения - существования - все R или Х∈(-∞,+∞) и вывод - разрывов нет. 2. Пересечение с осью абсцисс - ось Х . X = -1. - без комментариев. 3. Пересечение с осью ординат - ось У У(0) = 5. 4. Поведение на бесконечности У(-∞) = - ∞ и У(+∞) = +∞. 5. Исследование на чётность У(-х) = -2х³+3х²-5 У(+х) = 2х³+3х² -5 У(х) ≠ У(-х) - функция ни чётная ни нечётная. 6. Поиск экстремумов по производной функции. У'(x) = 6*x²+6х = 6*х(x+1) Нули производной - х1 = 0, х2 = -1. 7. Монотонность Возрастает - Х∈(-∞,-1]∪[0,+∞) - вне корней производной. Убывает - Х∈[-1,0] - внутри корней производной. 8. Значение в точках экстремума Ymax(-1) = -4 Ymin(0) = -5 9. Построение графика. Вычисляем дополнительные точки. Y(-2) = -9 Y(1.5) = 8.5 И готово - в приложении.
2)1/2+0,28=0,5+0,28=0,78
3)1,8×4целых 7/20=1целая 8/10×4целых7/20=28/10×87/20=609/50=12,18
4)0,78:0,13=6
5)12,18+6=18,18