Направляющий вектор прямой, образованной пересечением двух плоскостей А1x+B1y+C1z+D1=0 и A 2 x+B2y+C2z+D2=0, будет перпендикулярен нормальным векторам
→n1=(A1, B1, C1) и →n2=(A2, B2, C2 )
. То есть в качестве направляющего вектора мы может взять произведение векторов
→ n1=(A1, B1, C1) и →n2=(A2, B2, C2).
Нормальные векторы исходных плоскостей n1(1,-2,1) и n2(1,1,-1).
Находим их векторное произведение.
i j k| i j
1 -2 1| 1 -2
1 1 -1| 1 1 = 2i + 1j + 1k + 1j - 1i + 2k = 1i + 2j + 3k.
Нашли направляющий вектор прямой, по которой пересекаются исходные плоскости: n(1; 2; 3).
Этот вектор является нормальным вектором перпендикулярной плоскости.
Её уравнение: 1(x - 1) + 2(y + 2) + 3(z - 1) = 0.Раскроем скобки.
x - 1 + 2y + 4 + 3z - 3 = 0 или x + 2y + 3z = 0.
ответ: x + 2y + 3z = 0.
преобразовать смешанную дробь в неправильную
2. умножить числитель и знаменатель
3. если можно, то сократить числители и знаменатели
4.если после умножения получили неправильную дробь, то выделить целую часть
2)
1. преобразовать смешанную дробь в неправильную
2. умножить числитель и число
3.если можно, то сократить числители и знаменатели
4. если после умножения получили неправильную дробь, то выделить целую часть
3)
1. преобразовать смешанную дробь в неправильную
2. применить правило деления обыкновенных дробей
3. делимое умножаем на дробь обратную делителю
4. если можно, то сокращаем числители и знаменатели
5. если после умножения получили неправильную дробь, то выдели целую часть
х-2 -ширина
(X+X-2)*2=20
(2X-2)*2=20
4X-4=20
4X=20+4
4X=24
X=24/4
X=6