Саму задачу можно переформулировать немного по-другому:
Было: Расставить минимальное количество шашек на шахматной доске 8 на 8, так чтобы было невозможно поставить коня так, чтобы он не бил ни одной шашки.Переходит в: расставить на доске минимальное количество коней так, чтобы было невозможно поставить шашку не под удар коня.Если мы решим вторую задачу, то просто нужно будет заменить коней шашками - и мы получим искомое расположение.
По поводу второй задачи можно заметить, что:
Разные кони должны бить выделенные красным клетки на рисунке ниже.Отсюда следует, что мы не можем расставить менее, чем 4 * 3 = 12 коней. Если это можно сделать, то задача решится. И да, это получилось сделать (рисунок 2).
Заменяем коней шашками и получаем ответ: 12 коней.
ответ: 12 шашек.
ответ: 11,7
Пошаговое объяснение:
1. Так как касательные AB и DE не параллельны (сумма односторонних углов равна 120°, а не 180°), то они пересекутся в некоей точке K.
Треугольник KBD — равнобедренный, так как имеет два угла по 60°, то и третий угол равен 60°.
2. Рассмотрим треугольник ABC. Отрезки касательных, проведённых из одной точки, равны AB=BC. Если угол вершины равнобедренного треугольника равен 60°, то и углы у основания также равны 60°, то есть треугольник — равносторонний и AC = 3,9 см.
3. Так как из точек D и K также проведены касательные, то отрезки касательных равны, и равнобедренные треугольники CDE и EKA с углом вершины 60° являются равносторонними.
4. Сумма трёх углов у точек A, C и E 180°. Если два угла равны 60°, то и третий угол равен 60°. Следовательно, треугольник ACE равносторонний, так как все его углы равны 60°. AC=CE=EA= 3,9 см и PACE= 11,7 см.