. Условие, что выражение равно единице, можно записать так:
(100 + n)k(100 - n)l = 100k + l. Так как правая часть четна, то и левая часть должна быть четна, значит, n четно. Аналогично, левая часть делится на 5, значит, n делится на 5. Значит, n делится на 10. Можно перебрать все 9 возможных вариантов: n = 10, 20, ..., 90. Например, если n = 10, то левая часть делится на 11, что невозможно.Можно обойтись без перебора: пусть n не делится на 25. Тогда числа 100 - n и 100 + n тоже не делятся на 25. Значит, пятерка входит в разложение левой части на простые множители ровно k + l раз. Но она входит в разложение правой части 2(k + l ) раз -- противоречие. Итак, n делится на 25. Аналогично доказывается, что n делится на 4. Но тогда n делится на 100, что невозможно, ибо 0 < n < 100.
Пошаговое объяснение: 1) ∫₁³х³dx= x⁴/4|₁³ = 3⁴/4 - 1⁴/4 = 81/4 - 1/4 = 80/4 =20 2)∫₀ⁿ⁾³Sin2xdx = -1/2 · Cos2x |₀ⁿ⁾³ = 1/2· (Cos π/3-Cos0)= 1/2·(1/2 - 1)= 1/2 · (-1/2)= -1/4 3) ∫₁³dx/x³ = ∫₁³x⁻³dx = -1/2 ·x⁻²|₁³= -1/2·(1/3² - 1/1²)= -1/2·( 1/9 - 1) = -1/2 · (-8/9)= 4/9 4) ∫₀²(3x+1)²dx= ∫₀²(9x²+6x+1)dx= (9x³/3 +6x²/2 +x) |₀² = (3x³+3x²+x)|₀² = (3·8+3·4+2) -0= 38 5) ∫₀¹ dx/√(4-3x) = -1/3 · ∫₀¹ d(4-3x)/√(4-3x) =-1/3 · 2√(4-3x) |₀¹ = -2/3 · (√(4-3) -√(4-0) ) = -2/3 · (1 - 2) = 2/3 6)∫₀ⁿ⁾⁴ Cos²2xdx =1/2·∫₀ⁿ⁾⁴ (1+Cos4x)dx = 1/2·(x+1/4·Sin4x) |₀ⁿ⁾⁴ = 1/2 ·π/4 +1/8 ·(Sin π - Sin0) = π/8 + 1/8·0 = π/8