(х+2)(х-2) = 60
Пошаговое объяснение:
1. Пусть сторона квадрата х см. Тогда стороны полученного
прямоугольника (х+2)см и (х-2)см
Площадь прямоугольника (х+2)(х-2)
Т.к. Sпр.= 60, то можно составить уравнение
(х+2)(х-2) = 60
х² -4 = 60
х²=64
х1=8 , х2 =-8, т.к. сторона квадрата - положительное число, то х=8.
2.Стороны прямоугольника были х см и у см. Площадь этого прямоугольника ху.
В задаче пропущены данные о площади этого прямоугольника.
Стали х+2 см и у см.
Площадь полученного прямоугольника (х+2) у. Т.к. она равна 40 см², то получаем второе уравнение системы.
(х+2) у =40
Любой многочлен степени n вида представляется произведением постоянного множителя при старшей степени и n линейных множителей , i=1, 2, …, n, то есть , причем , i=1, 2, …, n являются корнями многочлена.
Эта теорема сформулирована для комплексных корней , i=1, 2, …, n и комплексных коэффициентов , k=0, 1, 2, …, n. Она является основой для разложения любого многочлена на множители.
Если коэффициенты , k=0, 1, 2, …, n – действительные числа, то комплексные корни многочлена ОБЯЗАТЕЛЬНО будут встречаться комплексно сопряженными парами.
К примеру, если корни и многочлена являются комплексно сопряженными, а остальные корни действительные, то многочлен представится в виде , где