Лемма: существует такое y-значное число вида XX...X (т.е. состоит из целиком из цифр X) такое, что оно делится на число 1987
Доказательство: число указанного вида можно представить в виде
; Сперва очевидно, что
делится на 9. Согласно малой теореме Ферма
, так как 1987 - число простое. Так как 9 и 1987 взаимно просты, то число XX...X делится на 1987 для n+1=1986, т.е. для n=1985.
Итак, взяв например n=1985 получим число 1...19...98...86...6, которое раскладывается как , где каждое из чисел вида X...X делится на 1987
2)49/24*6/7=7/4
3)6-7/4=24/4-7/4=17/4
4)12:3,2=12/1:32/10=12/1*10/32=15/4
5)15/4+17/4=32/4=8