Решение: Найдём высоту трапеции. Площадь трапеции равна: S=(a+b)*h/2 где а и b- основания трапеции Из этой формулы найдём высоту (h), подставив в её известные нам данные: 144=(7+17)*h/2 144=(24)*h/2 144*2=24*h 288=24h h=288 : 24 h=12 Если мы опустим высоты на нижнее основание трапеции, получим прямоугольник и два равных прямоугольных треугольников, так как трапеция равнобедренная. Нижние катеты прямоугольных треугольников равны по : (17-7) : 2=10:2=5 Теперь нам известны у прямоугольных треугольников два катета: -высота, которая является катетом, равная 12 - второй нижний катет, равный 5 Боковая сторона трапеции является гипотенузой прямоугольного треугольника, которую мы найдём по Теореме Пифагора c²=a²+b² c²=12²+5²=144+25=169 Отсюда: с=√169=13- боковая сторона трапеции
ответ: Боковые стороны данной равнобедренной трапеции равны по 13
при х=5
2×(5-4)
2×1=2
ответ:2
3x+1
при х=0.5
3×0.5+1
1.5+1=2.5
ответ:2.5
5(a+b)
при a=2;b=1.2
5×(2+1.2)
5×3.2=16
ответ: 16