Если исходить из классического определения луча, как геометрического множества точек прямой, лежащих по одну сторону от данной точки, и рассматривая данную задачу для лучей, лежащих на одной плоскости α, то 1) непересекающиеся лучи (не имеющие общих точек) должны быть параллельны друг другу, могут быть однонаправленными или разнонаправленными, и построить их можно бесконечное (математически) множество - пример на прилагаемом рис обозначен красным цветом; 2) пересекающиеся под прямым углом лучи будут иметь общую точку O, причём угол между ними будет составлять 90° и построить таких лучей также можно беконечное множество - пример на прилагаемом рис обозначен зелёным цветом.
по действиям) Вся площадь совхоза = 1 (целое) 4/9 - занимают луга 1 - 4/9 = 9/9 - 4/9 = 5/9 - оставшаяся площадь 5/9 * 3/5 = 3/9 - посевная площадь 4/9 - 3/9 = 1/9 - на столько больше площади занимают луга 1/9 - это 520 га. Находим целое по его части: 520 * 9 = 4680 га - площадь всей земли совхоза (9/9 = 1) ответ: 4680 га.
уравнение) Пусть х (га) - площадь всей земли совхоза, тогда 4/9х (га) - занимают луга, 3/5(х - 4/9х) = 3/5 * 5/9х = 3/9х (га) - посевная площадь. По условию задачи площадь лугов больше посевной площади на 520 га. Уравнение: 4/9х - 3/9х = 520 1/9х = 520 х = 520 : 1/9 х = 520 * 9 х = 4680 ответ: 4680 га - площадь всей земли совхоза.
4^11*4^-9= 4^2 или 16
6^-5 : 6^-3 = 6^-2 = 1/6^2 или 1/36
7^9 * 7^11 : 7^18 =7^20 : 7^18 = 7^2 или 49