211650
Пошаговое объяснение:
сумма целых чисел от -555 до 855.
Разобъем эту сумму на две части:
1. сумма целых чисел от -555 до +555. Начинаем суммировать вот так:
-555+555=0; -554+554=0; -553+553=0; ... ; -2+2=0, -1+1=0. Эта сумма равна 0.
2. осталось 300 чисел от 556 до 855. Начинаем их суммировать точно также:
556+855=1411;
557+854=1411;
...
705+706=1411.
Сколько таких пар слагаемых? Всего 300 чисел, значит пар 300/2=150.
1411+1411+... +1411=1411*150=211650.
Сумма целых чисел от -555 до 855 равна 211650
где
, если известно, что график этой функции пересекается с графиком функции
где
в точке
, если
.
, тогда как все прочие величины в выражении
нам известны. В задаче нам даны и величина
, и координаты
и
, остается найти только неизвестную величину
.
и
? Все очень просто: в условии сказано, что график искомой нами функции пересекает график другой функции в какой-то точке
. Это означает, что точка
принадлежит графикам обеих функций. И координаты этой точки можно подставить в выражение, задающее обе функции, и это выражение не потеряет смысла. Я докажу вам это. Возьмем известную из задания функцию
и вместо переменных
и
подставим координаты
и
точки
. Наше выражение не потеряет смысла (то есть равенство сохранится), так как точка
принадлежит графику этой функции (иными словами она задается этим самым уравнением). Проделаем это:
. Итак, мы видим, что мои слова правдивы. Этот метод действительно работает.
и
в выражении
подставим координаты
и
точки
, так как она принадлежит графику этой функции (что следует из условия):
и решим теперь данное уравнение:
.
, в задании же просят указать выражение, задающее нашу функцию, а оно имеет вид:
, подставим теперь вместо
и
их значения и получим ответ:
. На том же графике отметим точку
. И, наконец, определим, что график вида
— прямая, где
— координата
точки пересечения графика с осью
. То есть, иначе говоря, наш искомый график будет проходить через точки:
(так как
из условия) и
(из условия следует, что такая точка графику принадлежит, значит график через нее проходит). Построим график через две данные точки. Убедимся, что данный график соответствует графику функции
(убывает, проходит через точки (-1;1), (0;0), (1;-1) при параллельном переносе
, а также проходит через точку (0;4)
). Итак, задача решена двумя