b = 5
i = 3
Пошаговое объяснение:
Необходимо решить уравнение в простых числах:
b+i = (b-i)^3, откуда b-i > 0
Преобразуем уравнение:
(b-i) +2i = (b-i)^3
2i = (b-i)^3 - (b-i)
Рассмотрим общий случай: r ≠ 2; i≠2
А поскольку числа b и i - простые, то это значит, что они нечетные.
Откуда, число b - i является четным, то есть b-i = 2k, где k - натуральное число.
Таким образом:
2i = (2k)^3 - (2k)
2i = 2k( (2k)^2 - 1)
i = k(4k^2 - 1)
Число i является простым, а значит делится только на 1 и на само себя.
Учитывая, что при натуральном k: k <4k^2 - 1, то возможен только один вариант:
k = 1
4k^2 - 1 = i
Откуда:
i = 4*1^2 - 1 = 3 - простое число.
b-i = 2k = 2
b = i + 2 = 5 - простое число
То есть видим одно из решений:
i= 3
b = 5
Рассмотрим теперь случай, когда одно из простых чисел b и i равно 2, но поскольку b>i, то i = 2
2i = (b-i)^3 - (b-i)
4 = (b-2)^3 -(b-2)
b-2 = t - натуральное нечетное число.
t^3 -t - 4 = 0
Откуда t - нечетный делитель числа 4, то есть t =1
1^3 - 1 - 4 ≠ 0
А значит этот вариант отпадает.
Пошаговое объяснение:
S = (v1 + v2) * t
Уравнением:
Примем за х скорость другого поезда:
(98 + х) * 2 = 396
98 + х = 396 : 2
98 + х = 198
х = 198 - 98
х = 100
ответ: скорость другого поезда 100 км/ч.
Решение по действиям:
1) 396 : 2 = 198 км/ч - скорость сближения поездов
2) 198 - 98 = 100 км/ч - скорость другого поезда.
Или:
1) 98 * 2 = 196 км - проехал один поезд до встречи
2) 396 - 196 = 200 км - проехал другой поезд
3) 200 : 2 = 100 км/ч - скорость другого поезда.
б) V1=72 км/ч
V2=68 км/ч
S=420 км
72+68=140 км/ч скорость сближения поездов
420:140=3 часа
ответ: через 3 часа поезда встретятся.
А если 120 в квадрате, то 14400