М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
bviktoria4567
bviktoria4567
11.02.2022 12:58 •  Математика

Маша выпила из кувшина 4 стакана молока а ее брат 6 стаканов сколько стаканов молока было в кувшине сначало если в нем осталось 5 стаканов

👇
Ответ:
nurik01viper
nurik01viper
11.02.2022
4+6=10 (стаканов) выпили
5+10=15 (стаканов)
ответ: было 15 стаканов молока
4,6(47 оценок)
Ответ:
Natashabuchok
Natashabuchok
11.02.2022
15стаканов было
6+5+4=15
4,4(48 оценок)
Открыть все ответы
Ответ:
ксюша1704
ксюша1704
11.02.2022
Все отношения между числами симметричные, т.е. если взаимно поменять местами, скажем, a и b , то ничего не изменится, всё будет работать как прежде.

Значит, мы можем переставить все числа, так,
чтобы оказалось, что c b a 1 .

Введём новые переменные \{ x , y , k , m , n \} \in N .

И будем искать такие комбинации a, a+x, a+x+y , чтобы

( [ a + 1 ] + x + y ) | ( 2a+x ) ,
( [ a + 1 ] + x ) | ( 2a+x+y ) и
( a + 1 ) | ( 2a+2x+y ) .

Начнём с первого требования, оно эквивалентно утверждению, что:

k ( [ a + 1 ] + x + y ) = 2a + x ;

(k-1) x + ky = 2a - k [ a + 1 ] ;

При k 1 , правая часть отрицательная, а левая положительна, что не возможно.

Значит, k = 1 \ ; \ \Rightarrow y = a - 1 ;

Теперь подставим вместо y его значение y = a - 1 и будем искать такие комбинации a, a+x, 2a+x-1 , чтобы:

( 2a + x ) | ( 2a+x ) – теперь всегда будет выполняться с k = 1 ,
( [ a + 1 ] + x ) | ( 3a+x-1 ) и
( a + 1 ) | ( 3a+x-1 ) .

Проанализируем второе требование, оно эквивалентно утверждению, что:

m ( [ a + 1 ] + x ) = 3a+x-1 ;

(m-1) x = 3a - 1 - m [ a + 1 ] ;

При m 2 , правая часть отрицательная, а левая положительна, что не возможно.

При m = 1 \ ; \ \Rightarrow 0 = 2a - 2 \ ; \ \Rightarrow a = 1 , но это не подходит по условию.

Значит, m = 2 \ ; \ \Rightarrow x = a - 3 ;

Теперь подставим вместо x его значение x = a - 3 и будем искать такие комбинации a, 2a-3, 3a-4 , чтобы:

( 3 [ a - 1 ] ) | ( 3 [ a - 1 ] ) – теперь всегда будет выполняться с k = 1 ,
( 2 [ a - 1 ] ) | ( 4 [ a - 1 ] ) – теперь всегда будет выполняться с m = 2 ,
( a + 1 ) | ( 5a-7 ) .

Проанализируем последнее требование, оно эквивалентно утверждению, что:

n ( a + 1 ) = 5a - 7 ;

na + n = 5a - 7 ;

5a - na = 7 + n ;

( 5 - n ) a = 7 + n ;

a = \frac{ 7 + n }{ 5 - n } = \frac{ 12 + n - 5 }{ 5 - n } = \frac{ 12 }{ 5 - n } - \frac{ 5 - n }{ 5 - n } = \frac{ 12 }{ 5 - n } - 1 ;

Сумма всей комбинации – это:

S = a + (2a-3) + (3a-4) = 6a-7 = 6(a-1)-1 = 6( \frac{ 12 }{ 5 - n } - 2 ) - 1 ,

максимум которой достигается при минимальном значении

в знаменателе дроби \frac{ 12 }{ 5 - n } , т.е. при n = 4 .

Тогда сумма всей комбинации S = 6( \frac{ 12 }{ 5 - n } - 2 ) - 1 = 6( \frac{ 12 }{ 5 - 4 } - 2 ) - 1 =

= 6( \frac{ 12 }{ 1 } - 2 ) - 1 = 6( 12 - 2 ) - 1 = 6 \cdot 10 - 1 = 60 - 1 = 59 ;

О т в в е т : 59 .
4,4(69 оценок)
Ответ:
Zay4565
Zay4565
11.02.2022
Сложение и вычитание десятичных дробей. Эти операции выполняются так же, как и сложение и вычитание целых чисел. Необходимо только записать соответствующие десятичные знаки один под другим. П р и м е р . Умножение десятичных дробей. На первом этапе перемножаем десятичные дроби как целые числа, не принимая во внимание десятичную точку. Затем применяется следующее правило: количество десятичных знаков в произведении равно сумме десятичных знаков во всех сомножителях. Замечание: до простановки десятичной точки в произведении нельзя отбрасывать нули в конце! П р и м е р . Сумма чисел десятичных знаков в сомножителях равна: 3 + 4 = 7. Сумма цифр в произведении равна 6. Поэтому необходимо добавить один ноль слева: 0197056 и проставить перед ним десятичную точку: 0.0197056. Деление десятичных дробей Деление десятичной дроби на целое число Если делимое меньше делителя, записываем ноль в целой части частного и ставим после него десятичную точку. Затем, не принимая во внимание десятичную точку делимого, присоединяем к его целой части следующую цифру дробной части и опять сравниваем полученную целую часть делимого с делителем. Если новое число опять меньше делителя, ставим ещё один ноль после десятичной точки в частном и присоединяем к целой части делимого следующую цифру его дробной части. Этот процесс повторяем до тех пор, пока полученное делимое не станет больше делителя. После этого деление выполняется, как для целых чисел. Если делимое больше делителя или равно ему, сначала делим его целую часть, записываем результат деления в частном и ставим десятичную точку. После этого деление продолжается, как в случае целых чисел. П р и м е р . Разделить 1.328 на 64. Р е ш е н и е : Деление одной десятичной дроби на другую. Сначала переносим десятичные точки в делимом и делителе на число десятичных знаков в делителе, то есть делаем делитель целым числом. Теперь выполняем деление, как в предыдущем случае. П р и м е р . Разделить 0.04569 на 0.0006. Р е ш е н и е. Переносим десятичные точки на 4 позиции вправо и делим 456.9 на 6:
4,5(100 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ