a)15cosx=3cosx·(0,2)–sinx;
15cosx=(3·5)cosx=3cosx·5cosx;
(0,2)–sinx=(1/5)–sinx=(5–1)–sinx=5sinx;
уравнение принимает вид:
3cosx·5cosx=3cosx·5sinx;
3cosx > 0
5cosx=5sinx
cosx=sinx
tgx=1
x=(π/4)+πk, k∈z
б) чтобы найти корни, принадлежащие отрезку [–3π; –3π/2] рассмотрим неравенства.
–3π ≤ (π/4)+πk ≤ –3π/2, k∈z
–3 ≤ (1/4)+k ≤ –3/2, k∈z
–3 целых 1/4 ≤ k ≤ (1/4)–(3/2), k∈z
–3 целых 1/4 ≤ k ≤ (–5/4), k∈z
неравенству удовлетворяют k=–3 и k=–2
при k=–3
x=(π/4)–3π=–11π/4
при k=–2
x=(π/4)–2π=–7π/4
о т в е т. а)(π/4)+πk, k∈z; б) –11π/4; –7π/4.
Линейные уравнения ах = b, где а ≠ 0; x=b/a.
Пример 1. Решите уравнение – х + 5,18 = 11,58.
– х + 5,18 = 11,58;
– х = – 5,18 + 11,58;
– х = 6,4;
х = – 6,4.
ответ: – 6,4.
Пример 2. Решите уравнение 3 – 5(х + 1) = 6 – 4х.
3 – 5(х + 1) = 6 – 4х;
3 – 5х – 5 = 6 – 4х;
– 5х + 4х = 5 – 3+6;
– х = 8;
х = – 8.
ответ: – 8.
Пример 3. Решите уравнение .
. Домножим обе части равенства на 6. Получим уравнение, равносильное исходному.
2х + 3(х – 1) = 12; 2х + 3х – 3 =12; 5х = 12 + 3; 5х = 15; х = 3.
ответ: 3.
Пример 4. Решите систему
Из уравнения 3х – у = 2 найдём у = 3х – 2 и подставим в уравнение 2х + 3у = 5.
Получим: 2х + 9х – 6 = 5; 11х = 11; х = 1.
Следовательно, у = 3∙1 – 2; у = 1.
ответ: (1; 1).
Замечание. Если неизвестные системы х и у, то ответ можно записать в виде ко
Пошаговое объяснение:
надеюсь правильно
328-у-6=912
-у=912-328+6
-у=590
у=-590