В третьей урне будет 2 шара. Введем гипотезы: H1 - в 3 урне 2 белых шара, H2 - в 3 урне 2 черных шара, H3 - в 3 урне черный и белый шары. Посчитаем вероятности гипотез: p(H1) = (2/5)*(4/6) = 4/15 p(H2) = (3/5)*(2/6) = 1/5 p(H3) = (2/5)*(2/6)+(3/5)*(4/6) = 8/15 Сумма вероятностей гипотез должна равнять 1: 4/15+1/5+8/15 = 1 Событие A заключается в том что из 3 урны достали белый шар. Посчитаем условные вероятности p(A|H1) = 1, из двух белых выбирают белый p(A|H2) = 0, из двух черных выбирает белый p(A|H3) = 1/2, из черного и белого выбирают белый Полная вероятность события A: p(A) = p(H1)*p(A|H1) + p(H2)*p(A|H2) + p(H3)*p(A|H3) = (4/15)*1 + (1/5)*0 + (8/15)*(1/2) = 8/15 ответ: 8/15
ДУМАЕМ 1)Догонят из-за разности скоростей. 2) Второму надо проехать больше - третий за 15 минут уедет. РЕШАЕМ Время встречи первого - догнал третьего. t(1,3) = S / (V1-V3) = 30/(15-9) = 5 часов - Переводим 15 мин = 0,25 часа. Вычисляем путь третьего за 0,25 часа S3 = V3*t3 = 9*0.25 = 2.25 км. Время встречи встречи второго - догнал третьего t(2,3) = (S +S3)/(V2-V3) =(30+2.25)/(15-9) = 5.375 час = 5 час 22.5 мин. Интервал будет в 22.5 мин. - УРА!, но не правильно. ДУМАЕМ ещё сильнее. НАДО найти ИНТЕРВАЛ времени, который возник из-за разности путей после разного времени старта t3=15 мин за счет разности скоростей 15-9. РЕШАЕМ В ОДНО УРАВНЕНИЕ. dT= (V3*t3) / (V2-V3) = 9*0.25/(15-9) = 9/6*0.75= 0.375 час = 22,5 мин. Вот это ПРАВИЛЬНОЕ решение