А 71,4 км В
> (х + 2) t - 1,7 ч (х - 2) км/ч <
Пусть х км/ч - собственная скорость лодки, тогда (х + 2) км/ч - скорость лодки по течению реки, (х - 2) км/ч - скорость лодки против течения реки; 71,4 : 1,7 = 714 : 17 = 42 км/ч - скорость сближения. Уравнение:
(х + 2) + (х - 2) = 42
2х = 42
х = 42 : 2
х = 21 (км/ч) - собственная скорость лодки
(21 + 2) · 1,7 = 23 · 1,7 = 39,1 (км) - пройдёт лодка по течению реки
(21 - 2) · 1,7 = 19 · 1,7 = 32,3 (км) - пройдёт лодка против течения
ответ: 21 км/ч; 39,1 км; 32,3 км.
Даны точки A(-4;2;-1), B(1;2;1) и C(-2;0;1).
Если плоскость перпендикулярна вектору BC, то этот вектор и есть нормальным вектором плоскости.
Находим вектор ВС.
ВС = (-2-1; 0-2; 1-1) = (-3; -2; 0).
У параллельной прямой коэффициенты общего уравнения плоскости Ax + By + Cz + D = 0 равны координатам нормального вектора.
Подставив координаты точки А(-4;2;-1), получаем уравнение:
-3*(x + 4) + (-2)*(y - 2) + 0*(z + 1) = 0,
-3x - 12 - 2y + 4 = 0,
-3x - 2y - 8 = 0 или с положительным знаком при х:
3x + 2y + 8 = 0.
909
819
997
815
590
вроде все