Рисунок прикреплен.
Дано: конус, ВС=12 см, ∠НСВ=30°
Найти: объем конуса
Решение: по условию образующая конуса наклонена к плоскости под углом в 30°. Это значит, что угол между образующей и радиусом основания конуса 30°.
Из вершины конуса опустим высоту. Обозначим её ВН.
ΔВНС прямоугольный.
У него известна гипотенуза ВС=12 и ∠НСВ=30°.
В прямоугольном треугольнике катет, лежащий напротив угла в 30° в два раза меньше гипотенузы.
По теореме Пифагора найдем второй катет ΔВНС. Он же является радиусом основания конуса.
Объем конуса вычисляется по формуле: , где R - радиус основания, h - высота конуса.
ответ: 216π см³
34+17+83=34+100=134
56+24+38+62=80+100=180
88+19+21+12=88+12+19+21=100+40=140
25+65+75=25+75+65=100+65=165
35+17+65+33=35+65+17+33=100+50=150
27+123+16+234=150+250=400
156+79+21+44=156+44+79+21=200+100=300