Пошаговое объяснение:
аₙ=а₁+(n-1)d
а₁ - первый член последовательности
аₙ - член занимающий место n ( 1,2,...n.)
n - номер члена
d - разность между членами ("добавка" которую прибавляют к каждому,чтобы получить последующий)
а₁=2 d=3 2, 2+3, 2+3*2,2+3*3,2+3*4 2 , 5 , 8 , 11 , 14
а₁=0,2 d=0,3 0,2 ; 0,2+0,3 ; 0,2+0,3*2 ; 0,2+0,3*3 ; 0,2+0,3*4
0,2 ; 0,5 ; 0,8 ; 1,1 ; 1,4
а₁= - 0,2 d=0,3 - 0,2 ; -0,2+0,3 ; -0,2+0,3*2 ; -0,2+0,3*3 ; -0,2+0,3*4
- 0,2 ; 0,1 ; 0,4 ; 0,7 ; 1
а₁= 1/2=3/6, d=1/3=2/6 (так легче считать)
3/6 ; 3/6+2/6=5/6 ; 3/6+2/6*2=7/6 ;3/6+2/6 *3=9/6 ;3/6+2/6 *4=11/6
1/2 ; 5/6 ; 1 1/6 ; 1 1/2 ;1 5/6;
а₁= -1/2=3/6, d=-1/3=-2/6 (так легче считать)
-3/6; -3/6-2/6=-5/6; -3/6-2/6*2=-7/6=-1 1/6;-3/6-2/6 *3=-9/6=-1 1/2;
-3/6-2/6 *4=-11/6=-1 5/6
-1/2 ; -5/6 ; -1 1/6 ;- 1 1/2 ; -1 5/6;
а₁= -1/2=3/6, d=1/3=2/6 (так легче считать)
-3/6 ; -3/6+2/6=-1/6 ; -3/6+2/6*2=1/6 ;-3/6+2/6 *3=3/6 ;-3/6+2/6 *4=5/6
-1/2 ; -1/6 ; 1/6 ; 1/2 ; 5/6;
1.
1) Выразим у через х.
-2x + y = 8
y = 8 + 2x
Теперь, подставим у, выраженное через х в первое уравнение:
-2х + (8 + 2х) = 8
Раскроем скобки:
-2х + 2х + 8 = 8
Мы видим, что иксы взаимоуничтожаются, так что уравнение равно при любом х.
Например, при х = 1:
у = 8 + 2*1 = 10, подставляем в исходное уравнение: -2*1 + 10 = 8 - верное равенство.
Возьмём х = 2 : у = 8 + 2*2 = 12 => -2*2 + 12 = 8
2)Решаем также:
х - 3у=6
-3у = 6 - х
3у = х - 6
у = (х - 6) / 3
Решения находим также:
х = 3 => у = (3-6) / 3 = -1
3 -3 * (-1) = 3 + 3 = 6 - всё верно.
х=10 => у = (10 - 6 ) / 3 = 4/3
10 - 3 * 4/3 = 10 - 4 = 6 - всё верно.
2.
1) 4х - у = 8
4х = 8 + у
х = (8 + у) / 4
у = 4 => x = (8 + 4) / 4 = 3
исх. уравнение: 4*3 - 4 = 12 - 4 =8
y = 0 = > x = (8 + 0) / 4 = 2
исх. уравнение: 4*2 - 0 = 8
2) х + 3у = -2
х = -2 - 3у
у = 3 => x = -2 - 3*3 = -11
исх. уравнение: -11 + 3*3 = -2
у = 5 => х = -2 -3*5 = -17
исх. уравнение: -17 + 15 = -2
3. 3х + у = 6
Приводим к стандартному виду:
у = 6 -3х
( таблица)
x | 0 | 1 |
y | 6 | 3 |