проведём высоту в треугольнике. Она будет являться и медианой. (по теореме о том, что в равнобедренном треугольнике высота, проведённая к основанию является биссектрисой и медианой)
Рассмотрим 1 из получившихся треуг. ( после проведения высоты)
Он прямоугольный, его гнипотенуза - это сторона a - 14 корней из 3, один из катетов - это высота, которую ищем и второй катет - это половина стороны (т.к. медиана), т.е. он равен 7 корней из3
По теореме Пифагора:
h^2 = гипотенуза^2 - второй катет^2 ( Вы сделаете чертёжь, и будете писать уже в буквах, а не в словах, как у меня)
h^2 = 588 -147
h^2 = 441
h=21 (см)
Надеюсь, всё понятно объяснила, без чертежа много слов, но вроде всё легко
проведём высоту в треугольнике. Она будет являться и медианой. (по теореме о том, что в равнобедренном треугольнике высота, проведённая к основанию является биссектрисой и медианой)
Рассмотрим 1 из получившихся треуг. ( после проведения высоты)
Он прямоугольный, его гнипотенуза - это сторона a - 14 корней из 3, один из катетов - это высота, которую ищем и второй катет - это половина стороны (т.к. медиана), т.е. он равен 7 корней из3
По теореме Пифагора:
h^2 = гипотенуза^2 - второй катет^2 ( Вы сделаете чертёжь, и будете писать уже в буквах, а не в словах, как у меня)
h^2 = 588 -147
h^2 = 441
h=21 (см)
Надеюсь, всё понятно объяснила, без чертежа много слов, но вроде всё легко
Книги 5/7х ( руб )
Тетради ( 5/7х - 1,9 ) руб
Уравнение
Х + 5/7х + ( 5/7х - 1,9 ) = 6,6
Х + 10/7х = 6,6 + 1,9
17/7х = 8,5
Х = ( 17/2 ) : ( 17/7 )
Х = 7/2 = 3,5 ( руб ) портфель
5/7•7/2 = 5/2 = 2,5 ( руб ) книги
2,5 - 1,9 = 0,6 ( руб ) тетради