Машинистка печатает 15 страниц в час, а вторая машинистка за 5 часов печатает столько же страниц сколько 1 за 4 часа, успеют ли машинистки перепечатать рукопись объемом в 100 страниц за 3 часа при совместной работе?
Полезное утверждение: сумма цифр даёт такой же остаток при делении на 9, что и само число. Доказательство. Пусть число имеет вид . Рассмотрим разность между этим числом и суммой его цифр: Коэффициент перед равен - k девяток, очевидно делится на 9. Если разность двух целых чисел делится на 9, то они дают одинаковые остатки при делении на 9, что и требовалось доказать.
__________________________________________
Возвращаемся к задаче. Первоначальное число давало остаток 6 при делении на 9. Тогда после первого нажатия волшебной кнопки на экране будет число, дающее такой же остаток от деления на 9, что и 2 * 6, после следующего - как и 4 * 6, и вообще, после n нажатий число будет давать такой же остаток, что и . не делится на 9 ни при каком n, так что на экране не появится ни одного числа, делящегося на 9, в том числе и 9333 = 9 * 1037.
Полезное утверждение: сумма цифр даёт такой же остаток при делении на 9, что и само число. Доказательство. Пусть число имеет вид . Рассмотрим разность между этим числом и суммой его цифр:
Коэффициент перед равен - k девяток, очевидно делится на 9. Если разность двух целых чисел делится на 9, то они дают одинаковые остатки при делении на 9, что и требовалось доказать.
Возвращаемся к задаче. Первоначальное число давало остаток 6 при делении на 9. Тогда после первого нажатия волшебной кнопки на экране будет число, дающее такой же остаток от деления на 9, что и 2 * 6, после следующего - как и 4 * 6, и вообще, после n нажатий число будет давать такой же остаток, что и . не делится на 9 ни при каком n, так что на экране не появится ни одного числа, делящегося на 9, в том числе и 9333 = 9 * 1037.
15 стр=1 ч→15*4=60стр
60:5=13
13+15=28
28*3=84