Для того, чтобы узнать сколько существует целых чисел , модуль которых меньше 5, но больше 2, решим в целых числах следующее двойное неравенство:
2 < |x| < 5.
Рассмотрим два случая.
1) х >= 0.
При таких значениях х неравенство 2 < |x| < 5 принимает вид:
2 < x < 5.
Очевидно, что данное неравенство имеет два целочисленных решения:
х = 3 и х = 4.
2) х < 0.
При таких значениях х неравенство 2 < |x| < 5 принимает вид:
2 < -x < 5.
Умножая все части неравенства на -1 и меняя знаки неравенства, получаем:
-5 < x < -2.
Очевидно, что данное неравенство имеет два целочисленных решения:
х = -4 и х = -3.
ответ: существует 4 целых числа, модуль которых меньше 5, но больше 2.
Пошаговое объяснение:
Нужно найти Наибольшее Общее Кратное. Для этого находим делители данных чисел.
16 = 2 × 2 × 2 × 2,
27 = 3 × 3 × 3,
36 = 2 × 2 × 3 × 3,
70 = 2 × 5 × 7.
Общие делители:
2 (16, 36, 70),
2 (16, 36),
3 (27, 36),
3 (27, 36).
Их записываем один раз. И потом все оставшиеся делители. Получается,
2 × 2 × 3 × 3 × 2 × 2 × 3 × 5 × 7 = 15 120
15 120 ÷ 16 = 945 (на столько нужно будет умножить числитель дроби),
15 120 ÷ 27 = 560 (на столько нужно будет умножить числитель дроби),
15 120 ÷ 36 = 420 (на столько нужно будет умножить числитель дроби),
15 120 ÷ 70 = 216 (на столько нужно будет умножить числитель дроби).
ответ: 15 120 — общий знаменатель.
18x+15;
63ba;
44m+22.