Влевой части стоит сумма модулей - сумма неотрицательных величин. нетрудно понять, что эта сумма будет равна 0 только тогда, когда все слагаемые равны 0. при этом из равенства нулю модуля следует равенство нулю внутримодульного выражения. то есть, имеем систему:теперь решаем систему. решить систему уравнений, значит, найти решения, удовлетворяющие одновременно всем уравнениям системы. первое уравнение - квадратное. с теоремы виета находим корни.во втором уравнении - произведение, равное 0. тут работает простое правило: произведение равно 0 тогда и только тогда, когда хотя бы один из множителей равен 0, а остальные при этом имеют смысл. смысл тут имеют все слагаемые всегда, поэтому приравниваем к 0 каждое слагаемое: или сразу замечаем, что корни -6 и 1 удовлетворяют обоим уравнениям, а вот 6 - не у дел, поэтому отбрасываем его. третье уравнение - аналогично, произведение, равное 0. применяем правило, но теперь здесь уже есть квадратный корень, который имеет смысл, если его подкоренное выражение неотрицательно. то есть, имеем или решаем первое уравнение:корень -1 нам не подходит(не удовлетворяет двум предыдущим уравнениям). то есть, здесь остаётся только корень 1. решаем вторую систему:делаем проверку по второму условию:то есть, этот корень проходит проверку по системе. кроме того, он удовлетворяет остальным уравнениям основной системы, поэтому тоже входит в ответ. собираем теперь то, что у нас есть и записываем ответ: -6, 1
Если число кратно 45, то оно кратно 9 и 5. Если число делится на 9, то его сумма цифр делится на 9. Если число делится на 5, то последняя цифра - 0 или 5. У нас все цифры должны быть четны, значит, последняя цифра 0. Теперь нам нужно найти три первых цифры, которые в сумме делятся на 9. Если сумма трех цифр равна 9, то хотя бы одно из них нечетное. Значит, их сумма равна 18. Это тройки (4, 6, 8), (6, 6, 6), и (2, 8, 8). Можно перечислить ВСЕ такие числа: 4680, 4860, 6480, 6840, 8460, 8640, 6660, 2880, 8280, 8820 Выбирай любое.