М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

5класс решите уравнение: 1) 87 : (4х + 5) = 3 2) 17 * ( 3х - 16) = 85 3) 9 * (6х - 13) = 153 4) 3 * ( 8х + 51) = 201 5) (46х - 57) : 3 = 27 6) ( 19х + 62) : 15 = 13

👇
Ответ:
прапрр
прапрр
09.03.2023
1. 87 : (4х + 5) = 3
87:3=4x+5
29-5=4x
4x=24
x=6

2. 17 * ( 3х - 16) = 85
3x-16=85:17
3x=5+16
3x=21
x=7

3. 9 * (6х - 13) = 153
6x-13=153:9
6x=17+13
6x=30
x=5

4. 3 * ( 8х + 51) = 201
8x+51=201:3
8x=67-51
8x=16
x=2

5. (46х - 57) : 3 = 27
46x-57=27*3
46x=81+57
46x=138
x=3

6. (19х + 62) : 15 = 13
19x+62=13*15
19x=195-62
19x=133
x=7
4,8(96 оценок)
Открыть все ответы
Ответ:
Matvey2281337
Matvey2281337
09.03.2023
Дана функция y= 6/(x² +3).

1) Найти область определения функции;
Ограничений нет - х ∈ R.
2) Исследовать функцию на непрерывность;
Непрерывна, так как нет точек разрыва функции.
3) Определить, является ли данная функция четной, нечетной;
f(-x) = 6/((-x)² + 3) =  6/(x² +3) = f(x). Функция чётная.
4) Найти интервалы функции и точки её экстремума ;
Находим производную функции.
y' = -12x/(x² + 3)².
Приравняв её нулю (достаточно только числитель), имеем 1 корень:
х = 0.
Имеем 2 промежутка (-∞; 0) и (0; ∞).
Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.
x =   -1       0         1
y' = 0,75     0     -0,75.
Отсюда получаем:
Функция возрастает на промежутке  (-∞; 0) и убывает на промежутке (0; ∞).
Экстремум только один - это максимум в точке х = 0.
5) Найти интервалы выпуклости и вогнутости и точки перегиба графика функции;
Находим вторую производную.
y'' = 36(x² - 1)/(x² + 3)³.
Приравняв нулю, имеем 2 точки перегиба х = 1 и х = -1.
6) Найти асимптоты графика функции.
Асимптота есть одна у = 0 (ось Ох).
График функции, таблица точек для его построения приведены в приложении.
4,5(85 оценок)
Ответ:
vovazvyagin
vovazvyagin
09.03.2023
Дана функция y= (x-3)²/(x² +9).

1) Найти область определения функции; 
Ограничений нет - х ∈ R (знаменатель не может быть равен нулю).
2) Исследовать функцию на непрерывность; 
Непрерывна, так как нет точек разрыва функции.
3) Определить, является ли данная функция четной, нечетной; 
f(-x) = ((-x)-3)²/((-x)² +9) = (x+3)²/(x² +9) ≠ f(-x) ≠ -f(-x).
 Функция не чётная и не нечётная.
4) Найти интервалы функции и точки её экстремума ; 
Находим производную функции.
y' = 6(x-3)(х+3)/(x² + 9)².
Приравняв её нулю (достаточно только числитель), имеем 2 корня:
х = 3 и х = -3.
Имеем 3 промежутка (-∞; -3), (-3; 3) и (3; ∞).
Находим знаки производной на этих промежутках.
Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.
x =      -4        -3              0             3                4
y' = 0,0672      0        -0,66667       0          0,0672.
Отсюда получаем:
Функция возрастает на промежутках  (-∞; -3), (3; +∞) и убывает на промежутке (-3; 3)
Экстремумов  два:
 - максимум в точке х = -3,
 - минимум в точке  х = 3.
5) Найти интервалы выпуклости и вогнутости и точки перегиба графика функции; 
Находим вторую производную.
y'' = -12х(x² - 27)/(x² + 9)³.
Приравняв нулю, имеем 3 точки перегиба:
х = 0, х = √27 = 3√3 и х = -3√3.
6) Найти асимптоты графика функции.
Асимптота есть одна горизонтальная у =1.
График функции, таблица точек для его построения приведены в приложении.
4,6(62 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ