все перемноженные числа от 1 до 21 есть факториал от 21 , т.е. (21)! (записывается с воскл. знаком).
21! = 51090942171709440000.
ответ: 7
ответ: 3.
Пошаговое объяснение:
количество вершин у пятиугольников равно 33 − 6 = 27. Этого не может быть, потому что число 27 на 5 не делится
Если шестиугольников два, то количество вершин у пятиугольников равно
33 −12 = 21, чего не может быть.
Если шестиугольников три, то количество вершин у пятиугольников равно
33 −18 = 15. Значит, пятиугольников может быть три.
Если шестиугольников четыре, то количество вершин у пятиугольников равно
33 − 24 =9, чего не может быть.
Если шестиугольников пять, то количество вершин у пятиугольников равно
33 −30 = 3, чего не может быть.
Ксюша вырезала из бумаги несколько пятиугольников и шестиугольников. Всего у вырезанных фигурок 39 вершин. Сколько пятиугольников вырезала Ксюша?
Запиши решение и ответ.
Пояснение.
Предположим, что шестиугольник только один. Тогда количество вершин у пятиугольников равно 39 − 6 = 33. Этого не может быть, потому что число 33 на 5 не делится.
Если шестиугольников два, то количество вершин у пятиугольников равно 39 − 12 = 27, чего быть не может.
Если шестиугольников три, то количество вершин у пятиугольников равно 39 − 18 = 21, чего не может быть.
Если шестиугольников четыре, то количество вершин у пятиугольников равно 39 − 24 = 15. Значит, может быть 3 пятиугольника.
Если шестиугольников пять, то количество вершин у пятиугольников равно 39 − 30 = 9, чего не может быть.
Больше пяти шестиугольников быть не может.
Допускается другая последовательность действий и рассуждений, обоснованно приводящая к верному ответу.
ответ: 3.
Пошаговое объяснение:
1*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18*19*20*21=51 090 942 171 709 440 000, т.е вместо звездочки была написана цифра 7