М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Yana111111743
Yana111111743
15.03.2021 05:00 •  Математика

Надо придумать сказку 3 класс про квадрат и треугольник как они подружились

👇
Ответ:
PaymLaim
PaymLaim
15.03.2021
Жил был квадрат, у него не было друзей, но однажды он повстречал треугольник. Они с ним быстро подружились и измеряли меры длин. Они ходили в кинотеатр в котором показывали научные фильмы, им эти фильмы очень понравились. Рано утром они пошли гулять в математический парк, там их встретил круг. Они с ним познакомились и научились не только измерять но и чертить. Научились считать дроби и решать трудные задачи. Когда у кого то был вопрос они спрашивали его у учителей. Учителя с удовольствием отвечали на этот вопрос. Три друга учились очень хорошо! Конец.


4,7(9 оценок)
Открыть все ответы
Ответ:

шестиугольников было всего 2.

Пошаговое объяснение:

Каждый пятиугольник дает 5 вершин, шестиугольник - 6. Пусть пятиугольников было х, шестиугольников у. Тогда получаем уравнение с двумя неизвестными:

5х +6у = 32.

Поскольку вершин 32, то не могло быть так, что все фигуры были пятиугольниками (иначе бы число вершин оканчивалось 0 или 5). Максимум шестиугольников могло быть 32:6 = 5 ост 2. Остаток в 2 вершины нас не устроит, так как из них "не собрать" пятиугольник. Остаток должен быть кратен 5 (5, 10, 15 и  так далее). Нечетные остатки получить не получится (6у заведомо четное число, а при вычитании из 32 ответ получится четным). Значит лишних вершин могло быть 10 или 20. Если их было 10, то на шестиугольники остается 22 вершины, что не кратно 6. Значит на пятиугольники пришлось 20 вершин, а на шестиугольники - 12. Отсюда - шестиугольников было всего 2.

4,7(55 оценок)
Ответ:
maxchequers
maxchequers
15.03.2021

шестиугольников было всего 2.

Пошаговое объяснение:

Каждый пятиугольник дает 5 вершин, шестиугольник - 6. Пусть пятиугольников было х, шестиугольников у. Тогда получаем уравнение с двумя неизвестными:

5х +6у = 32.

Поскольку вершин 32, то не могло быть так, что все фигуры были пятиугольниками (иначе бы число вершин оканчивалось 0 или 5). Максимум шестиугольников могло быть 32:6 = 5 ост 2. Остаток в 2 вершины нас не устроит, так как из них "не собрать" пятиугольник. Остаток должен быть кратен 5 (5, 10, 15 и  так далее). Нечетные остатки получить не получится (6у заведомо четное число, а при вычитании из 32 ответ получится четным). Значит лишних вершин могло быть 10 или 20. Если их было 10, то на шестиугольники остается 22 вершины, что не кратно 6. Значит на пятиугольники пришлось 20 вершин, а на шестиугольники - 12. Отсюда - шестиугольников было всего 2.

4,8(50 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ