стоите на лестничном марше и хотите подняться на первую ступеньку — № 1. Для этого надо сделать всего одно действие — подняться на одну ступеньку вверх. Теперь давайте рассмотрим вторую ступеньку, то есть N = 2. Чтобы подняться на неё, имеются два варианта. Вы можете сделать два шага — по одной ступеньке за раз или сразу подняться на вторую ступеньку.
Это практически вся информация, которая нужна вам для решения этой задачи. Чтобы понять, почему, представьте, что вашей целью является ступенька № 3. Впервые в этой ситуации вы не можете попасть на неё одним движением. здесь потребуется комбинация шагов. Существует только два попадания на ступеньку № 3: либо в виде короткого одиночного шага (со ступеньки № 2), либо двойного шага (со ступеньки № 1). Мы уже знаем, что для подъема на ступеньку № 1 имеется лишь один вариант. Мы также знаем, что есть всего два подняться на ступеньку № 2. Сложите эти варианты (1 + 2 = 3), и вы получите число позволяющих подняться на ступеньку № 3.
Та же самая логика применяется для подъема на каждую следующую ступеньку. Существует два чтобы подняться на ступеньку № 4 — со ступеньки № 2 или со ступеньки № 3. Добавьте число подъема на ступеньку № 2 (2) к числу позволяющих оказаться на ступеньке № 3 (3). Это даёт 5 вариантов — число позволяющих оказаться на ступеньке № 4.
Легко продолжить эту серию и дальше. С увеличением числа ступенек число подниматься по ним нарастает, как снежный ком, что можно представить в следующем виде:
ledderЛюбому человеку с математической подготовкой нижняя серия покажется до боли знакомой. Так оно и есть. Это последовательность Фибоначчи. (Чуть подробнее о ней ниже.) Интервьюер хочет получить ответ для общего случая из N ступенек.
Это просто число Фибоначчи под номером N. Леонардо Фибоначчи, также известный как Леонардо Пизанский, был самым влиятельным итальянским математиком в Средние века. Именно Фибоначчи понял невероятное превосходство арабскo-индийской позиционной системы исчисления по сравнению с римским обозначением цифр, которое все ещё использовалось в средневековой Европе. При арабско-индийской системы умножение и деление можно было свести к алгоритму (еще одно арабское слово). При применении римских чисел эти операции на практике выполнять было сложно. Торговцам приходилось приглашать экспертов и дорого им платить за вычисления, которые те осуществляли при абаков. В 1202 году Фибоначчи написал Liber abaci — руководство по использованию абака, в котором он расхваливал арабские числа своим читателям, которые были, скорее всего, настроены к ним скептически. В этой книге также описывается и та серия чисел, которую мы теперь называем по его фамилии. Однако её изобрел не Фибоначчи. Эта последовательность была известна еще индийским ученым, жившим в VI веке.
Напишите 1, а затем добавьте еще 1 рядом. Сложите их и получите сумму (2), которая затем добавляется к формируемой последовательности:
1 1 2
Для получения каждого нового члена лишь складывайте последние два числа в ряду/ Серия примет следующий вид.
1 1 2 3 5 8 13 21 34 55 89 144…ответ:
Пошаговое объяснение:
стоите на лестничном марше и хотите подняться на первую ступеньку — № 1. Для этого надо сделать всего одно действие — подняться на одну ступеньку вверх. Теперь давайте рассмотрим вторую ступеньку, то есть N = 2. Чтобы подняться на неё, имеются два варианта. Вы можете сделать два шага — по одной ступеньке за раз или сразу подняться на вторую ступеньку.
Это практически вся информация, которая нужна вам для решения этой задачи. Чтобы понять, почему, представьте, что вашей целью является ступенька № 3. Впервые в этой ситуации вы не можете попасть на неё одним движением. здесь потребуется комбинация шагов. Существует только два попадания на ступеньку № 3: либо в виде короткого одиночного шага (со ступеньки № 2), либо двойного шага (со ступеньки № 1). Мы уже знаем, что для подъема на ступеньку № 1 имеется лишь один вариант. Мы также знаем, что есть всего два подняться на ступеньку № 2. Сложите эти варианты (1 + 2 = 3), и вы получите число позволяющих подняться на ступеньку № 3.
Та же самая логика применяется для подъема на каждую следующую ступеньку. Существует два чтобы подняться на ступеньку № 4 — со ступеньки № 2 или со ступеньки № 3. Добавьте число подъема на ступеньку № 2 (2) к числу позволяющих оказаться на ступеньке № 3 (3). Это даёт 5 вариантов — число позволяющих оказаться на ступеньке № 4.
Легко продолжить эту серию и дальше. С увеличением числа ступенек число подниматься по ним нарастает, как снежный ком, что можно представить в следующем виде:
ledderЛюбому человеку с математической подготовкой нижняя серия покажется до боли знакомой. Так оно и есть. Это последовательность Фибоначчи. (Чуть подробнее о ней ниже.) Интервьюер хочет получить ответ для общего случая из N ступенек.
Это просто число Фибоначчи под номером N. Леонардо Фибоначчи, также известный как Леонардо Пизанский, был самым влиятельным итальянским математиком в Средние века. Именно Фибоначчи понял невероятное превосходство арабскo-индийской позиционной системы исчисления по сравнению с римским обозначением цифр, которое все ещё использовалось в средневековой Европе. При арабско-индийской системы умножение и деление можно было свести к алгоритму (еще одно арабское слово). При применении римских чисел эти операции на практике выполнять было сложно. Торговцам приходилось приглашать экспертов и дорого им платить за вычисления, которые те осуществляли при абаков. В 1202 году Фибоначчи написал Liber abaci — руководство по использованию абака, в котором он расхваливал арабские числа своим читателям, которые были, скорее всего, настроены к ним скептически. В этой книге также описывается и та серия чисел, которую мы теперь называем по его фамилии. Однако её изобрел не Фибоначчи. Эта последовательность была известна еще индийским ученым, жившим в VI веке.
Напишите 1, а затем добавьте еще 1 рядом. Сложите их и получите сумму (2), которая затем добавляется к формируемой последовательности:
1 1 2
Для получения каждого нового члена лишь складывайте последние два числа в ряду/ Серия примет следующий вид.
1 1 2 3 5 8 13 21 34 55 89 144…ответ:
Пошаговое объяснение:
Дана правильная четырёхугольная пирамида SABCD, точка О – центр основания, S – вершина, SO = 8, SB = 17. Найти:
а) сторону основания а.
а = √2*√(17² - 8²) = √2*√(289-64) = √2*√225 = 15√2.
б) апофему А.
А = √((а/2)² + 8²) = √((15√2/2)² + 8²) = √((225/2) + 64) = √(353/2)
в) Площадь полной поверхности.
So = a² = 225*2 = 450.
Sбок = (1/2)РА = (1/2)*(4*15√2)*√(353/2) = 30√353.
S = Sо + Sбок = 450 + 30√353.
г) угол β наклона бокового ребра к плоскости основания
β = arcsin(8/17) = 0,48996 радиан = 28,0725 градуса.
д) двугранный угол α при основании.
α = arc sin(8/A) = arc sin(8/√(353/2)) = 0,6462 радиан = 37,025 градуса.
е) площадь сечения, проходящего через два боковых ребра, не принадлежащих одной грани.
S(BSD) = (1/2)*8*(a√2) = (1/2)*8*(15√2*√2) = 120.