М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
yuliyagrigoren3
yuliyagrigoren3
10.02.2021 07:13 •  Математика

Вправильной четырёхугольной пирамиде sabcd точка о – центр основания, s – вершина, so = 8, sb = 17. найдите а) сторону основания, б) апофему в) площадь полной поверхности г) угол наклона бокового ребра к плоскости основания д) двугранный угол при основании, е) площадь сечения, проходящего через два боковых ребра, не принадлежащих одной грани подсказка в пунктах г, д, если к точным значениям угла нельзя прийти, то находите синус, косинус или тангенс угла.

👇
Ответ:
Jack123456789
Jack123456789
10.02.2021

Дана правильная четырёхугольная пирамида SABCD, точка О – центр основания, S – вершина, SO = 8, SB = 17. Найти:

а) сторону основания а.

а = √2*√(17² - 8²) = √2*√(289-64) = √2*√225  = 15√2.

б) апофему А.

А = √((а/2)² + 8²) = √((15√2/2)² + 8²) = √((225/2) + 64) = √(353/2)

в) Площадь полной поверхности.

So = a² =  225*2 = 450.

Sбок = (1/2)РА = (1/2)*(4*15√2)*√(353/2) = 30√353.

S = Sо + Sбок = 450 + 30√353.

г) угол β наклона бокового ребра к плоскости основания

β = arcsin(8/17) = 0,48996 радиан = 28,0725 градуса.

д) двугранный угол α при основании.

α = arc sin(8/A) = arc sin(8/√(353/2)) = 0,6462 радиан = 37,025 градуса.

е) площадь сечения, проходящего через два боковых ребра, не принадлежащих одной грани.

S(BSD) = (1/2)*8*(a√2) = (1/2)*8*(15√2*√2) = 120.

4,5(21 оценок)
Открыть все ответы
Ответ:
Qweyudbdbf
Qweyudbdbf
10.02.2021

стоите на лестничном марше и хотите подняться на первую ступеньку — № 1. Для этого надо сделать всего одно действие — подняться на одну ступеньку вверх. Теперь давайте рассмотрим вторую ступеньку, то есть N = 2. Чтобы подняться на неё, имеются два варианта. Вы можете сделать два шага — по одной ступеньке за раз или сразу подняться на вторую ступеньку.


Это практически вся информация, которая нужна вам для решения этой задачи. Чтобы понять, почему, представьте, что вашей целью является ступенька № 3. Впервые в этой ситуации вы не можете попасть на неё одним движением. здесь потребуется комбинация шагов. Существует только два попадания на ступеньку № 3: либо в виде короткого одиночного шага (со ступеньки № 2), либо двойного шага (со ступеньки № 1). Мы уже знаем, что для подъема на ступеньку № 1 имеется лишь один вариант. Мы также знаем, что есть всего два подняться на ступеньку № 2. Сложите эти варианты (1 + 2 = 3), и вы получите число позволяющих подняться на ступеньку № 3.


Та же самая логика применяется для подъема на каждую следующую ступеньку. Существует два чтобы подняться на ступеньку № 4 — со ступеньки № 2 или со ступеньки № 3. Добавьте число подъема на ступеньку № 2 (2) к числу позволяющих оказаться на ступеньке № 3 (3). Это даёт 5 вариантов — число позволяющих оказаться на ступеньке № 4.


Легко продолжить эту серию и дальше. С увеличением числа ступенек число подниматься по ним нарастает, как снежный ком, что можно представить в следующем виде:


ledderЛюбому человеку с математической подготовкой нижняя серия покажется до боли знакомой. Так оно и есть. Это последовательность Фибоначчи. (Чуть подробнее о ней ниже.) Интервьюер хочет получить ответ для общего случая из N ступенек.


Это просто число Фибоначчи под номером N. Леонардо Фибоначчи, также известный как Леонардо Пизанский, был самым влиятельным итальянским математиком в Средние века. Именно Фибоначчи понял невероятное превосходство арабскo-индийской позиционной системы исчисления по сравнению с римским обозначением цифр, которое все ещё использовалось в средневековой Европе. При арабско-индийской системы умножение и деление можно было свести к алгоритму (еще одно арабское слово). При применении римских чисел эти операции на практике выполнять было сложно. Торговцам приходилось приглашать экспертов и дорого им платить за вычисления, которые те осуществляли при абаков. В 1202 году Фибоначчи написал Liber abaci — руководство по использованию абака, в котором он расхваливал арабские числа своим читателям, которые были, скорее всего, настроены к ним скептически. В этой книге также описывается и та серия чисел, которую мы теперь называем по его фамилии. Однако её изобрел не Фибоначчи. Эта последовательность была известна еще индийским ученым, жившим в VI веке.


Напишите 1, а затем добавьте еще 1 рядом. Сложите их и получите сумму (2), которая затем добавляется к формируемой последовательности:


1 1 2


Для получения каждого нового члена лишь складывайте последние два числа в ряду/ Серия примет следующий вид.


1 1 2 3 5 8 13 21 34 55 89 144…ответ:


Пошаговое объяснение:

4,4(17 оценок)
Ответ:
сашенька062
сашенька062
10.02.2021

стоите на лестничном марше и хотите подняться на первую ступеньку — № 1. Для этого надо сделать всего одно действие — подняться на одну ступеньку вверх. Теперь давайте рассмотрим вторую ступеньку, то есть N = 2. Чтобы подняться на неё, имеются два варианта. Вы можете сделать два шага — по одной ступеньке за раз или сразу подняться на вторую ступеньку.


Это практически вся информация, которая нужна вам для решения этой задачи. Чтобы понять, почему, представьте, что вашей целью является ступенька № 3. Впервые в этой ситуации вы не можете попасть на неё одним движением. здесь потребуется комбинация шагов. Существует только два попадания на ступеньку № 3: либо в виде короткого одиночного шага (со ступеньки № 2), либо двойного шага (со ступеньки № 1). Мы уже знаем, что для подъема на ступеньку № 1 имеется лишь один вариант. Мы также знаем, что есть всего два подняться на ступеньку № 2. Сложите эти варианты (1 + 2 = 3), и вы получите число позволяющих подняться на ступеньку № 3.


Та же самая логика применяется для подъема на каждую следующую ступеньку. Существует два чтобы подняться на ступеньку № 4 — со ступеньки № 2 или со ступеньки № 3. Добавьте число подъема на ступеньку № 2 (2) к числу позволяющих оказаться на ступеньке № 3 (3). Это даёт 5 вариантов — число позволяющих оказаться на ступеньке № 4.


Легко продолжить эту серию и дальше. С увеличением числа ступенек число подниматься по ним нарастает, как снежный ком, что можно представить в следующем виде:


ledderЛюбому человеку с математической подготовкой нижняя серия покажется до боли знакомой. Так оно и есть. Это последовательность Фибоначчи. (Чуть подробнее о ней ниже.) Интервьюер хочет получить ответ для общего случая из N ступенек.


Это просто число Фибоначчи под номером N. Леонардо Фибоначчи, также известный как Леонардо Пизанский, был самым влиятельным итальянским математиком в Средние века. Именно Фибоначчи понял невероятное превосходство арабскo-индийской позиционной системы исчисления по сравнению с римским обозначением цифр, которое все ещё использовалось в средневековой Европе. При арабско-индийской системы умножение и деление можно было свести к алгоритму (еще одно арабское слово). При применении римских чисел эти операции на практике выполнять было сложно. Торговцам приходилось приглашать экспертов и дорого им платить за вычисления, которые те осуществляли при абаков. В 1202 году Фибоначчи написал Liber abaci — руководство по использованию абака, в котором он расхваливал арабские числа своим читателям, которые были, скорее всего, настроены к ним скептически. В этой книге также описывается и та серия чисел, которую мы теперь называем по его фамилии. Однако её изобрел не Фибоначчи. Эта последовательность была известна еще индийским ученым, жившим в VI веке.


Напишите 1, а затем добавьте еще 1 рядом. Сложите их и получите сумму (2), которая затем добавляется к формируемой последовательности:


1 1 2


Для получения каждого нового члена лишь складывайте последние два числа в ряду/ Серия примет следующий вид.


1 1 2 3 5 8 13 21 34 55 89 144…ответ:


Пошаговое объяснение:

4,8(91 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ