М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
dfggdsddfdddf
dfggdsddfdddf
04.01.2021 09:48 •  Математика

На 32 руб. купили. 4 тетради .сколько таких же тетрадей можно купить на 56 руб? запишите кратко в таблицу и реши её! составить таблицу.

👇
Ответ:
Kejiro
Kejiro
04.01.2021
32 рубля - 4 тетради. Значит можем узнать стоимость 1ой тетрадки : 32:4=8р.
Сколько тетрадей можно купить на 56 рублей: 56:8 = 7 тетрадей. 
А какая таблица?
4,8(96 оценок)
Открыть все ответы
Ответ:
AnnaGlyuza0436
AnnaGlyuza0436
04.01.2021
Сначала найдём производную:
y*=(x^2(1-x)^2)*=(x^2)*(1-x)^2+x^2((1-x)^2)*=2x(1-x)^2+x^2*2(1-x)*(1-x)*=2x(1-2x+x^2)+x^2(2-2x)*(-1)=2x-4x^2+2x^3-2x^2+2x^3=4x^3-6x^2+2x
Теперь то, что получилось (жирный шрифт) приравниваем к нулю и решаем:
4x^3-6x^2+2x=0
x(4x^2-6x+2)=0
x=0; 4x^2-6x+2=0
         2x^2-3x+1=0
         D=(-3)^2-4*2*1=1
         x1=1
         x2=0.5
Дальше строим ось X и отмечаем точки в порядке возрастания.
Надеюсь вам знаком метод интервалов.
в результате получается, что Xмин = 0 и 1, а Xмах=0,5
Теперь подставляем в исходное уравнение (y=x^2(1-x)^2)
Yнаим=Y(0)=0^2(1-0)^2=0
Yнаиб=Y(0.5)=0.5^2(1-0.5)^2=0.25*0.25=0.0625
ответ: Yнаим=0; Yнаиб=0,0625
4,6(65 оценок)
Ответ:
dashasergeeva10
dashasergeeva10
04.01.2021
В заданном неравенстве (b+2)x^2-(b+1) x +2>0 левая часть - квадратный трёхчлен. Его общий вид: ах²+вх+с.

Пусть f(x) = ax² + bx + c, a ≠ 0.
Для того, чтобы корни данного квадратного трёхчлена были больше некоторого числа t, необходимо и достаточно, чтобы выполнялась следующая система условий:  D ≥ 0, a · f(t) > 0, x₀ > t (это абсцисса вершины параболы, t = 0 по заданию).

Находим дискриминант: D=b²-4ac.
D=b²+2b+1-4(b+2)*2 = b²-6b-15.
Приравниваем его нулю: b²-6b-15 = 0.
Квадратное уравнение, решаем относительно b: 
Ищем дискриминант:D=(-6)^2-4*1*(-15)=36-4*(-15)=36-(-4*15)=36-(-60)=36+60=96;
Дискриминант больше 0, уравнение имеет 2 корня:b₁=(√96-(-6))/(2*1)=(√96+6)/2=√96/2+6/2=√96/2+3 = 2√6+3 ≈ 7.89898;

b₂=(-√96-(-6))/(2*1)=(-96+6)/2= -96/2+6/2=- √96/2+3 = -2√6+3 ≈ -1.89898.

Находим a · f(t):
f(0) = (b+2)*0²-(b+1)*0+2 = 2.
a · f(t) = (b+2)*2 = 2b+4.
Находим условие a · f(t) > 0: 
2b+4 > 0,
2b > -4,
b > -2.

Проверяем третье условие: x₀ > t.
x₀ = -b/2а = (b+1)/(2b+4) > 0.
b > -1.
Совместное выполнение всех условий даёт ответ:
чтобы неравенство (b+2)x^2-(b+1) x +2>0 выполнялось при любых действительных значениях x, параметр b должен находиться на отрезке:
3-2√6 < b < 3+2√6.
4,6(1 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ