Сначала найдём производную: y*=(x^2(1-x)^2)*=(x^2)*(1-x)^2+x^2((1-x)^2)*=2x(1-x)^2+x^2*2(1-x)*(1-x)*=2x(1-2x+x^2)+x^2(2-2x)*(-1)=2x-4x^2+2x^3-2x^2+2x^3=4x^3-6x^2+2x Теперь то, что получилось (жирный шрифт) приравниваем к нулю и решаем: 4x^3-6x^2+2x=0 x(4x^2-6x+2)=0 x=0; 4x^2-6x+2=0 2x^2-3x+1=0 D=(-3)^2-4*2*1=1 x1=1 x2=0.5 Дальше строим ось X и отмечаем точки в порядке возрастания. Надеюсь вам знаком метод интервалов. в результате получается, что Xмин = 0 и 1, а Xмах=0,5 Теперь подставляем в исходное уравнение (y=x^2(1-x)^2) Yнаим=Y(0)=0^2(1-0)^2=0 Yнаиб=Y(0.5)=0.5^2(1-0.5)^2=0.25*0.25=0.0625 ответ: Yнаим=0; Yнаиб=0,0625
В заданном неравенстве (b+2)x^2-(b+1) x +2>0 левая часть - квадратный трёхчлен. Его общий вид: ах²+вх+с.
Пусть f(x) = ax² + bx + c, a ≠ 0. Для того, чтобы корни данного квадратного трёхчлена были больше некоторого числа t, необходимо и достаточно, чтобы выполнялась следующая система условий: D ≥ 0, a · f(t) > 0, x₀ > t (это абсцисса вершины параболы, t = 0 по заданию).
Находим дискриминант: D=b²-4ac. D=b²+2b+1-4(b+2)*2 = b²-6b-15. Приравниваем его нулю: b²-6b-15 = 0. Квадратное уравнение, решаем относительно b: Ищем дискриминант:D=(-6)^2-4*1*(-15)=36-4*(-15)=36-(-4*15)=36-(-60)=36+60=96; Дискриминант больше 0, уравнение имеет 2 корня:b₁=(√96-(-6))/(2*1)=(√96+6)/2=√96/2+6/2=√96/2+3 = 2√6+3 ≈ 7.89898;
Находим a · f(t): f(0) = (b+2)*0²-(b+1)*0+2 = 2. a · f(t) = (b+2)*2 = 2b+4. Находим условие a · f(t) > 0: 2b+4 > 0, 2b > -4, b > -2.
Проверяем третье условие: x₀ > t. x₀ = -b/2а = (b+1)/(2b+4) > 0. b > -1. Совместное выполнение всех условий даёт ответ: чтобы неравенство (b+2)x^2-(b+1) x +2>0 выполнялось при любых действительных значениях x, параметр b должен находиться на отрезке: 3-2√6 < b < 3+2√6.
Сколько тетрадей можно купить на 56 рублей: 56:8 = 7 тетрадей.
А какая таблица?