1.Чтобы доказать первое утверждение составим числовое выражение согласно условиям утверждения:
В этом выражении деление на повторяется, поэтому вынесем это действие за скобку. Получим такое числовое выражение:
И решим его: В ответе у нас получилось целое число. Значит можно считать утверждение "если каждое из двух чисел делится на , то и их сумма делится на .
2.Для доказательства второго утверждения составим числовое выражение соответствующее условиям утверждения:
Вынесем общий делитель за скобку:
Решим получившееся выражение:
Так как число в ответе целое можно считать утверждение "если одно из двух чисел делится на ,то их произведение делится на " доказанным.
Правило из учебника гласит: наименьшее общее кратное нескольких чисел - это такое наименьшее число, которое делится на каждое из данных чисел. Для нахождения НОК нескольких чисел поступают так: 1) раскладывают каждое из чисел на простые множители; 2) выписывают множители одного из чисел; 3) дополняют произведение теми множителями, которые есть в других числах, а в первом их нет; 4) находят полученное произведение. Например, найдем НОК(24, 60, 48). 24=2·2·2·3 60=2·2·3·5 48=2·2·2·2·3 НОК(24,60,48)=2·2·2·3·5·2=240
получится 0
так 3а4 буде. так