1) найдем внутренний угол Д: 180-125=55°
Найдем угол С: С=180°-(90+55°)=35°
2) в треугольнике КМТ оба катета равны, значит, углы МКТ и КТМ равны 45°. Найдём угол Т в треугольнике KTS: Т=180-45=135°.
Угол S = 180°-(20°+135°)=25°.
3) Катет АС в два раза меньше гипотенузы АД, значит, угол Д=30°. Угол А=180°-(90°+30°)=60°
4) Первый острый угол – х; второй острый угол – 4х.
х+4х+90=180
5х=90
х=18° - первый острый угол
4×18°=72° - второй острый угол
5) Начертим прямоугольный треугольник АСВ, где угол С=90°.
Проведем биссектрисы СМ и ВК, которые пересекаются в точке О.
Рассмотрим треугольник СОВ, где угол С=45°, угол О=132°, угол В = 180°-(45°+132°)=3°.
Значит, в треугольнике АСВ угол В=6°.
Найдем угол А: А=180°-(90°+6°)=84°.
Итог: треугольник АСВ имеет углы: С=90°; В=6°; А=84°
Задача 4
Против течения - 1,6 ч.
По течению - 2,4 ч.
Скорость течения - 2,1 км/ч.
Скорость катера - 28,2 км/ч.
На сколько больше проплыл по течению реки, чем против течения?
1)28,2-2,1=26,1(км/ч) скорость против течения.
2)28,2+2,1=30,3(км/ч) скорость по течению.
3)26,1 *1,6=41,76(км) против течения.
4)30,3*2,4=72,72(км) по течению.
5)72,72-41,76=30,96(км) больше.
По течению на 30,96 км больше.