Пусть, n некое положительное число. Тогда -n будет отрицательным числом.
Известно, что всегда выполняется следующее тождество:
Ну или в другом виде:
Зададим новое положительное число k. Тогда -k будет отрицательным числом. Умножим всё выражение на число -k:
Переносим (-kn) на правую сторону при этом меняя знак:
Так как k и n положительны то (-k) и (-n) отрицательны. А значит, произведение отрицательных чисел равняется положительному числу. Что и требовалось доказать.
Оценка по столбцам: минимально возможное количество закрашенных клеток - 1·10=10. Оценка по строкам: минимально возможное количество закрашенных клеток - 3·10=30. Если разместить в каждую строку по 3 закрашенных клетки, то общее их количество не удастся разделить на столбцы по 1 или 7 клеток, так как система: не имеет решения в натуральных числах (первое уравнение - общее число столбцов, второе - количество закрашенных клеток). Если постепенно увеличивать общее количество закрашенных клеток, то окажется, что при их количестве, равном 34, система даст решение (4; 6). Значит, в 4 столбцах будет закрашено 7 клеток, а в 6 столбцах - одна. Дополнительно введенные 4 клетки равномерно распределим между этими строками, пользуясь условием, что в строке может быть 4 закрашенных клетки. \Пример расстановки на картинке. ответ: 34
Оценка по столбцам: минимально возможное количество закрашенных клеток - 1·10=10. Оценка по строкам: минимально возможное количество закрашенных клеток - 3·10=30. Если разместить в каждую строку по 3 закрашенных клетки, то общее их количество не удастся разделить на столбцы по 1 или 7 клеток, так как система: не имеет решения в натуральных числах (первое уравнение - общее число столбцов, второе - количество закрашенных клеток). Если постепенно увеличивать общее количество закрашенных клеток, то окажется, что при их количестве, равном 34, система даст решение (4; 6). Значит, в 4 столбцах будет закрашено 7 клеток, а в 6 столбцах - одна. Дополнительно введенные 4 клетки равномерно распределим между этими строками, пользуясь условием, что в строке может быть 4 закрашенных клетки. \Пример расстановки на картинке. ответ: 34
Эти свойства позволяют записать:
(−a)·(−b)=−(a·(−b))=−(−(a·b))=a·b.
Доказано