1) В представленной пропорции 1 1/3 и х являются крайними членами, 1 3/7 и 1,2 — средними.
2) Чтобы решить пропорцию, вспомним ее основное свойство:
произведение крайних членов пропорции равно произведению средних.
Тогда можно записать равенство:
1 1/3 * х = 1 3/7 * 1,2.
3) Решим его:
4/3 * х = 10/7 * 1 2/10;
4х/3 = 10/7 * 12/10;
4х/3 = 12/7;
4х = (12 * 3) / 7;
4х = 36/7;
х = 36/7 : 4;
х = 9/7;
х = 1 2/7.
4) Проверка:
1 1/3 : 1 3/7 = 1,2 : 1 2/7;
4/3 : 10/7 = 1 1/5 : 1 2/7;
4/3 * 7/10 = 6/5 * 7/9;
14/15 = 14/15, верно.
ответ: х = 1 2/7.
Надо найти пределы интегрирования, то есть точки пересечения двух парабол. Для этого приравниваем 2 уравнения.
(1/2)x^2-x+(1/2) = -x^2+2x+5
Получаем квадратное уравнение:
(3/2)х² - 3х - (9/2) = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-3)^2-4*1.5*(-4.5)=9-4*1.5*(-4.5)=9-6*(-4.5)=9-(-6*4.5)=9-(-27)=9+27=36;
Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√36-(-3))/(2*1.5)=(6-(-3))/(2*1.5)=(6+3)/(2*1.5)=9/(2*1.5)=9/3=3;
x₂=(-√36-(-3))/(2*1.5)=(-6-(-3))/(2*1.5)=(-6+3)/(2*1.5)=-3/(2*1.5)=-3/3=-1.
Парабола с отрицательным коэффициентом перед х² будет выше второй, поэтому при интегрировании надо второго уравнения вычесть первое.
∫(-x^2+2x+5-((1/2)x^2-x+(1/2))dx =
Подставив пределы от -1 до 3, получаем S = 16.
Пошаговое объяснение:
ну, я не уверена
6√3×27=162√2