Количество задач, которые осталось решить Пете и Коле относится как 5:1 Т.е., Пете осталось решить 5 частей задач (в 5 раз больше), а Коле 1 часть задач. 1) 159-123=36 (задач) - разница между решенными Колей и Петей задачами. 2) 5-1=4 (части) - осталось решить Пете, чтобы догнать Колю. 3) 36:4=9 (задач) - осталось решить Коле, а также количество задач в одной части. 4) 159+9=168 (задач) - всего задали на лето каждому из мальчиков. Из 168 задач Коля решил 159 задач (осталось решить 9 заданий) Из 168 задач Петя решил 123 задачи, осталось решить 9*5=45 заданий.
1) найти область определения функции: -∞ < x < +∞;2) выяснить, не является ли функция y=(x/4)-2x^2 чётной или нечётной:подставим переменную (-х) y(-х)=(-x/4)-2x^2 = -(y=(x/4)+2x^2) ≠ у(х) и ≠ -(у(х). Поэтому функция общего вида.3)пересечение с осями Ox и Oy; - с осью Ох при у = 0. (x/4)-2x^2 =0,25х - х² = х(0,25-2х) = 0. Имеем 2 точки пересечения с осью Ох: х = 0 и х = 0,25/2 = 0,125. 4) найти асимптоты графика функции - не имеет; 5) исследовать монотонность функции и найти ее экстремумы. График функции y=(x/4)-2x^2 это парабола ветвями вниз. Экстремумом является её максимум в вершине. Хо = -в/2а = -0,25/(2*(-2)) = 1/16 = 0,0625. Yo = (0,0625/4)-2*0,0625² = 0,007813. 6) найти точки перегиба, установить интервалы выпуклости и вогнутости графика функции; У параболы нет точки перегиба, заданная функция вся выпукла. Вторая производная равна -4, если f '' ( x ) < 0 для любого x ( a, b ), то функция f ( x ) является выпуклой на интервале ( a, b ). 7) исследовать знак функции. Положительные значения функция имеет на отрезке (0; 0,125), отрицательные: (-∞; 0)∪(0,125; +∞).
Уукрашение
рисуНак
швИ
Красиво
клАсика