М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
mmedvedev389
mmedvedev389
19.10.2021 15:55 •  Математика

Основание треугольника равно 26. медианы его боковых сторон равны 30 и 39. найти площадь этого треугольника.

👇
Ответ:
bWn
bWn
19.10.2021

треугольник АВС, АН=30 и СМ=39 медианы, АМ=МВ, ВН=НС, МН-средняя линия треугольника=1/2АС=26/2=13, АМНС - трапеция, МН параллельна АС, из точки Н проводим линию параллельную СМ до пересечения ее с продолжением АС в точке Е, ЕН=СМ=39, СМНЕ- параллелограмм, СЕ=МН=13, АЕ=АС+СЕ=26+13=39

треугольникАНЕ равнобедренный, АЕ=ЕН=39, проводим высоту ЕТ=медиане=биссектрисе на АН, АТ=ТН=1/2АН=30/2=15, треугольникАТЕ прямоугольный, ЕТ²=АЕ²-АТ²=1521-225=1296, ЕТ=36, площадь АНЕ=площадь трапеции АМНС=1/2*АН*ЕТ=1/2*30*36=540, что составляет 3/4 площади АВС

(площадь треугольника отсекаемого средней линией (МН)=1/4 площади АВС, можно подсчитать самим),

площадь АВС=площадьАМНС*4/3=540*4/3=720

4,8(25 оценок)
Открыть все ответы
Ответ:
Liza111333
Liza111333
19.10.2021
Дано:

Правильная четырехугольная пирамида SABCD.        

S_{\tt bok }(SABCD) = 45 (см²).

SH = h = 5 (см).

Найти:

a - сторону основания.

Решение:

Площадь боковой поверхности правильной четырехугольной пирамиды можно вычислить по следующей формуле:

\displaystyle S_{\tt bok} = 2ab, где a - сторона основания и b - апофема (высота боковой грани, проведенная из вершины).

Попробуем выразить b через a (сторону основания) и h=5 (см) (высоту пирамиды).

Рассмотрим прямоугольный \triangle SHM (где M - середина AB). В нем SH=5 (см), а MH = a/ 2 (см) (как половина стороны квадрата, равной a см).

По теореме Пифагора:

\displaystyle SH^2+MH^2=SM^2\\\\5^2 + \bigg ( \frac{ a }{2} \bigg )^2 = b^2 \\\\25 + \frac{a^2}{4} = b^2 \\\\b = \sqrt{\frac{a^2+100}{4} }

Все это подставляем в уравнение площади боковой поверхности (при возведении в квадрат держим в голове, что a - неотрицательное):

\displaystyle S_{\tt bok} = 2ab \\\\45 = 2 \cdot a \cdot \sqrt{ \frac{a^2+100}{4} } \\\\2025 = 4 \cdot a^2 \cdot \frac{a^2+100}{4} \\\\2025 = a^2 \cdot (a^2 + 50)

Пусть a^2=t:

\displaystyle 2025 = t(t + 100)\\\\t^2 + 100t - 2025=0 \\\\t_1 = \frac{-b+\sqrt{b^2-4ac} }{2a} = \frac{ -100 + \sqrt{18100} }{2} = -50 +{5\sqrt{181} } -50 + {5\sqrt{169} } 0 \\\\t_2 = \frac{-b-\sqrt{b^2-4ac} }{2a} = \frac{ -100 - \sqrt{18100} }{2} = -50 -{5\sqrt{181} } < 0

Второй корень нам не подходит по причине отрицательности. Значит:

\displaystyle a = \sqrt{ {5\sqrt{181}}-50}

Задача решена!

ответ:   \displaystyle \sqrt{ {5\sqrt{181}}-50} или около 4,16 (см).
Определите сторону основания правильной четырехугольной пирамиды, если её высота 5 см, а площадь бок
4,7(36 оценок)
Ответ:
Samatova03
Samatova03
19.10.2021
X-начальная стоимость
p%=0.01p
x*0.01p на столько повысилась
x+x*0.01p=x(1+0.01p) стал стоить товар
50%=0,5
0,5*x(1+0.01p) на только понизилась стоимость
x(1+0.01p)-0.5x(1+0.01p)=0.5x(1+0.01p) стал стоить товар
2*0,5x(1+0.01p)=x(1+0.01p) стал стоить товар после повышения в 2 раза
x(1+0,01p)*0.01p понизилась на р %
x(1+0.01p)-(x(1+0.01p)*0.01p)=x(1+0.01p)(1-0.01p)=x(1-0.0001p²) стал стоить товар
93,75%=0,9375
0,9375x это 93,75% от начальной стоимости
x(1-0.0001p²)=0.9375x
1-0.0001p²=0.9375x/x
-0.0001p²=-1+0.9375
-0.0001p²=-0.0625
p²=625
p=25
4,4(13 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ