Союзниками Сатира в этом походе были греческие наемники в числе не более двух тысяч и столько же фракийцев, а все остальное войско состояло из союзников - скифов в количестве двадцати с лишком тысяч пехоты и не менее десяти тысяч всадников. На стороне Эвмела был царь фатеев Арифарн с двадцатью тысячами конницы и двадцатью двумя тысячами пехоты. Когда произошло упорное сражение, Сатир, окруженный отборными воинами, завязал конную стычку со свитой Ариварна, стоявшей против него в центре боевого строя, и после значительных потерь с той и другой стороны принудил, наконец, варварского царя обратиться в бегство. Сначала Сатир бросился его преследовать, убивая всех попадавшихся у него на пути, но немного спустя, услышав, что брат его Эвмел одолевает на правом фланге и обратил в бегство его наемников, он прекратил преследование и поспешил на побежденным; сделавшись вторично виновником победы, он разбил все неприятельское войско, так что для всех стало ясно, что и по старшинству и по храбрости он был достоин наследовать отцовскую власть»
Так как as=bs=8 и bc=ac=17, то вершина пирамиды S лежит в вертикальной плоскости.Проведём вертикальную секущую плоскость через вершины S и С. В сечении имеем треугольник SDC, где D - основание высоты из точки С равнобедренного треугольника АВС. Находим стороны треугольника SDC: DC = √(17² - (1/2)4√7)²) = √(289 - 28) = √261 = 16.15549. SD = √(8² - (1/2)4√7)²) = √(64 - 28) = √36 = 6. Высота из вершины S является высотой пирамиды SО. Находим её по формуле: Подставим значения: a b c p 2p 16.155494 15 6 18.577747 37.15549442 и получаем высоту SО = 90 / √261 = 30 / √29 = 5.570860145. Площадь основания пирамиды находим по формуле Герона: a b c p 2p S 17 17 10.583005 22.291503 44.58300524 85.48684109. Площадь основания можно выразить так: S = 85.48684109 = √7308 = 6√(7*29). Тогда получаем объём пирамиды: V = (1/3)S*H = (1/3)*(6√(7*29))*(30/√29) = 60/√7 = 22,67787 куб. ед.