Признак делимости на 19 для двухзначного числа: ху делится на 19, когда х+2у делится на 19. Например: 19 => 1+2*9=1+18=19 => 19/19=1
Нам нужно двухзначное число больше 40, которое, при делении на 19, дает остаток 1.
Пусть ху - искомое число
{ 10x+y>40
{x+2y≥19 => x≥19-2y
10(19-2y)+y>40
190-20y+y>40
19y>150
y>7 17/19 => y>7
x≥19-2y≥19-14≥5
1. Имеем: десятки искомого числа ≥5, единицы >7; если предположить, что х=5, у=7, то 5+2*7=19, значит 57 кратно 19: 57/19=3.
Если xy>57, то => 58/19=3(ост.1)
Далее, находим еще двухзначные числа, соответствующие условию:
2. 19*4=76 => 76+1=77 => 77/19=4(ост.1)
3. 19*5=95 => 95+1=96 => 96/19=5(ост.1)
ответ: Существуют 3 числа, делящиеся на 19 с остатком 1: 58; 77; 96
В каждой цистерне было 70 литров воды.
Пошаговое объяснение:
Пусть и в первой, и во второй цистернах было х литров воды. Когда из первой цистерны взяли 54 литра воды, то в ней осталось (х - 54) литра, а когда из второй цистерны взяли 6 литров воды, то в ней осталось (х - 6) литров воды. По условию задачи известно, что после этого в первой цистерне воды осталось в 4 раза меньше, чем во второй цистерне. Чтобы уравнять количество воды в обеих цистернах, надо оставшееся меньшее количество воды в первой цистерне умножить на 4 и это будет равно 4(х - 54) литра или (х - 6) литров. Составим уравнение и решим его.
4(x - 54) = x - 6;
4x - 216 = x - 6;
4x - x = 216 - 6;
3x = 210;
x = 210 : 3;
x = 70 (л).
ответ. В каждой цистерне было 70 литров воды.
239,5
356,8
1486,4
76,8
50,3
351
401,1